An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy | SpringerLink
Skip to main content

An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy

  • Chapter
Foundations of Computational Intelligence Volume 3

Part of the book series: Studies in Computational Intelligence ((SCI,volume 203))

Abstract

Support vector machines represent a state-of-the-art paradigm, which has nevertheless been tackled by a number of other approaches in view of the development of a superior hybridized technique. It is also the proposal of present chapter to bring support vector machines together with evolutionary computation, with the aim to offer a simplified solving version for the central optimization problem of determining the equation of the hyperplane deriving from support vector learning. The evolutionary approach suggested in this chapter resolves the complexity of the optimizer, opens the ’blackbox’ of support vector training and breaks the limits of the canonical solving component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosch, R.A., Smith, J.A.: Separating hyperplanes and the authorship of the disputed federalist papers. American Mathematical Monthly 105, 601–608 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  3. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New Jersey (1999)

    MATH  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 1, 273–297 (1995)

    Google Scholar 

  5. Mierswa, I.: Evolutionary learning with kernels: A generic solution for large margin problems. In: Proc. of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 1553–1560 (2006)

    Google Scholar 

  6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  7. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, vol. 1, pp. 11–152 (1992)

    Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Interscience, Hoboken (1970)

    Google Scholar 

  9. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Transactions of the London Philosophical Society (A) 209, 415–446 (1908)

    Article  Google Scholar 

  10. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2004)

    Google Scholar 

  11. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. Proc. of Neural Information Processing Systems 1, 547–553 (2000)

    Google Scholar 

  12. Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Technical Report NC2-TR-1998-030. NeuroCOLT2 Technical Report Series (1998)

    Google Scholar 

  13. Rosipal, R.: Kernel-based Regression and Objective Nonlinear Measures to Access Brain Functioning. PhD thesis Applied Computational Intelligence Research Unit School of Information and Communications Technology University of Paisley, Scotland (2001)

    Google Scholar 

  14. Stoean, R.: Support vector machines. An evolutionary resembling approach. Universitaria Publishing House Craiova (2008)

    Google Scholar 

  15. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. In: Proc. 12th European Symposium on Artificial Neural Networks, vol. 1, pp. 519–524 (2004)

    Google Scholar 

  16. Howley, T., Madden, M.G.: The genetic evolution of kernels for support vector machine classifiers. In: Proc. of 15th Irish Conference on Artificial Intelligence and Cognitive Science 1 (2004), http://www.it.nuigalway.ie/m_madden/profile/pubs.html

  17. Jun, S.H., Oh, K.W.: An evolutionary statistical learning theory. International Journal of Computational Intelligence 3, 249–256 (2006)

    Google Scholar 

  18. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Stoean, R., Preuss, M., Stoean, C., Dumitrescu, D.: Concerning the potential of evolutionary support vector machines. In: Proc. of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 1436–1443 (2007)

    Google Scholar 

  20. Stoean, R., Dumitrescu, D., Preuss, M., Stoean, C.: Different techniques of multi-class evolutionary support vector machines. Proc. of Bio-Inspired Computing: Theory and Applications 1, 299–306 (2006)

    Google Scholar 

  21. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary multi-class support vector machines for classification. In: Proceedings of International Conference on Computers and Communications - ICCC 2006, Baile Felix Spa - Oradea, Romania, vol. 1, pp. 423–428 (2006)

    Google Scholar 

  22. Stoean, R., Dumitrescu, D., Stoean, C.: Nonlinear evolutionary support vector machines. application to classification. Studia Babes-Bolyai, Seria Informatica LI, pp. 3–12 (2006)

    Google Scholar 

  23. Stoean, R., Dumitrescu, D.: Evolutionary linear separating hyperplanes within support vector machines. Scientific Bulletin, University of Pitesti, Mathematics and Computer Science Series 11, 75–84 (2005)

    Google Scholar 

  24. Stoean, R., Dumitrescu, D.: Linear evolutionary support vector machines for separable training data. Annals of the University of Craiova, Mathematics and Computer Science Series 33, 141–146 (2006)

    MATH  Google Scholar 

  25. Stoean, R., Preuss, M., Dumitrescu, D., Stoean, C.: ε - evolutionary support vector regression. In: Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2006, vol. 1, pp. 21–27 (2006)

    Google Scholar 

  26. Stoean, R., Preuss, M., Dumitrescu, D., Stoean, C.: Evolutionary support vector regression machines. In: IEEE Postproc. of the 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, vol. 1, pp. 330–335 (2006)

    Google Scholar 

  27. Stoean, R.: An evolutionary support vector machines approach to regression. In: Proc. of 6th International Conference on Artificial Intelligence and Digital Communications, vol. 1, pp. 54–61 (2006)

    Google Scholar 

  28. Stoean, R., Stoean, C., Preuss, M., El-Darzi, E., Dumitrescu, D.: Evolutionary support vector machines for diabetes mellitus diagnosis. In: Proceedings of IEEE Intelligent Systems 2006, London, UK, vol. 1, pp. 182–187 (2006)

    Google Scholar 

  29. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary support vector machines for spam filtering. In: Proc. of RoEduNet IEEE International Conference, vol. 1, pp. 261–266 (2006)

    Google Scholar 

  30. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary detection of separating hyperplanes in e-mail classification. Acta Cibiniensis LV, 41–46 (2007)

    Google Scholar 

  31. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Forecasting soybean diseases from symptoms by means of evolutionary support vector machines. Phytologia Balcanica 12 (2006)

    Google Scholar 

  32. Mierswa, I.: Making indefinite kernel learning practical, technical report. Technical report. Artificial Intelligence Unit, Department of Computer Science, University of Dortmund (2006)

    Google Scholar 

  33. Bartz-Beielstein, T.: Experimental research in evolutionary computation - the new experimentalism. Natural Computing Series. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  34. Perez-Cruz, F., Figueiras-Vidal, A.R., Artes-Rodriguez, A.: Double chunking for solving svms for very large datasets. In: Proceedings of Learning 2004, Elche, Spain 1 (2004), eprints.pascal-network.org/archive/00001184/01/learn04.pdf

  35. DeJong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis University of Michigan, Ann Arbor (1975)

    Google Scholar 

  36. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., Dumitrescu, D. (2009). An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy. In: Abraham, A., Hassanien, AE., Siarry, P., Engelbrecht, A. (eds) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01085-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01085-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01084-2

  • Online ISBN: 978-3-642-01085-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics