Adaptive Full Scan Model for Range Finders in Dynamic Environments | SpringerLink
Skip to main content

Adaptive Full Scan Model for Range Finders in Dynamic Environments

  • Conference paper
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 54))

  • 6321 Accesses

Summary

Sensor models directly influence the efficiency and robustness of the estimation processes used in robot and object localization. This paper focuses on a probabilistic range finder sensor model for dynamic environments. The dynamic nature results from the presence of unmodeled and possibly moving objects and people. The goal of this paper is twofold. First, we present experiments to validate the Rigorously Bayesian Beam Model (RBBM), a new model we proposed in a previous paper. Second, we propose a sample-based full scan model to improve the state of the art models. In contrast to these Gaussian-based state of the art full scan models, the proposed model is able to handle the multi-modality of the range finder data, which is shown here to occur even in simple static environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plagemann, C., Kersting, K., Pfaff, P., Burgard, W.: Gaussian beam processes: A nonparametric Bayesian measurement model for range finders. In: Robotics: Science and Systems (RSS), Atlanta, Georgia, USA (June 2007)

    Google Scholar 

  2. Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robotics Research 20(5), 335–363 (2001)

    Article  Google Scholar 

  3. Hähnel, D., Schulz, D., Burgard, W.: Mobile robot mapping in populated environments and sensor planning  17(7), 579–597 (2003)

    Google Scholar 

  4. Hähnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: Int. Conf. Robotics and Automation, Taipeh, Taiwan, pp. 1557–1569 (2003)

    Google Scholar 

  5. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. AI Res. 11, 391–427 (1999)

    MATH  Google Scholar 

  6. Burgard, W., Fox, D., Hennig, D., Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids. In: Proc. of the National Conference on Artificial Intelligence (1996)

    Google Scholar 

  7. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9, 61–74 (1988)

    Google Scholar 

  8. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Pfaff, P., Burgard, W., Fox, D.: Robust Monte-Carlo localization using adaptive likelihood models. In: Christensen, H.I. (ed.) Eur. Rob. Sym., vol. 22, pp. 181–194. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. De Laet, T., De Schutter, J., Bruyninckx, H.: Rigorously Bayesian range finder sensor model for dynamic environments. In: Int. Conf. Robotics and Automation, Pasadena, California, U.S.A., pp. 2994–3001 (2008)

    Google Scholar 

  12. Pfaff, P., Plagemann, C., Burgard, W.: Improved likelihood models for probabilistic localization based on range scans. In: Proc. IEEE/RSJ Int. Conf. Int. Robots and Systems, San Diego, California (2007)

    Google Scholar 

  13. Fox, D.: Adapting the Sample Size in Particle Filters Through KLD-Sampling. Int. J. Robotics Research 22(12), 985–1003 (2003)

    Article  Google Scholar 

  14. Bruyninckx, H.: Open RObot COntrol Software, http://www.orocos.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Laet, T., Smits, R., De Schutter, J., Bruyninckx, H. (2009). Adaptive Full Scan Model for Range Finders in Dynamic Environments. In: Khatib, O., Kumar, V., Pappas, G.J. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00196-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00196-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00195-6

  • Online ISBN: 978-3-642-00196-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics