Dynamic Offline Conflict-Free Coloring for Unit Disks | SpringerLink
Skip to main content

Dynamic Offline Conflict-Free Coloring for Unit Disks

  • Conference paper
Approximation and Online Algorithms (WAOA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5426))

Included in the following conference series:

  • 674 Accesses

Abstract

A conflict-free coloring for a given set of disks is a coloring of the disks such that for any point p on the plane there is a disk among the disks covering p having a color different from that of the rest of the disks that covers p. In the dynamic offline setting, a sequence of disks is given, we have to color the disks one-by-one according to the order of the sequence and maintain the conflict-free property at any time for the disks that are colored. This paper focuses on unit disks, i.e., disks with radius one. We give an algorithm that colors a sequence of n unit disks in the dynamic offline setting using O(logn) colors. The algorithm is asymptotically optimal because Ω(logn) colors is necessary to color some set of n unit disks for any value of n [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajwani, D., Elbassioni, K.M., Govindarajan, S., Ray, S.: Conflict-free coloring for rectangle ranges using O(n .382) colors. In: The 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 181–187 (2007)

    Google Scholar 

  2. Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: The 22nd ACM Symposium on Computational Geometry (SoCG), pp. 41–43 (2006)

    Google Scholar 

  3. Bar-Noy, A., Cheilaris, P., Olonetsky, S., Smorodinsky, S.: Online conflict-free colorings for hypergraphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 219–230. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Conflict-free coloring for intervals: from offline to online. In: The 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 128–137 (2006)

    Google Scholar 

  5. Chen, K.: How to play a coloring game against a color-blind adversary. In: The 22nd ACM Symposium on Computational Geometry (SoCG), pp. 44–51 (2006)

    Google Scholar 

  6. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matousek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36(5), 1342–1359 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, K., Kaplan, H., Sharir, M.: Online conflict-free coloring for halfplanes, congruent disks, and axis-parallel rectangles. ACM Transactions on Algorithms (in press)

    Google Scholar 

  8. Elbassioni, K.M., Mustafa, N.H.: Conflict-free colorings of rectangles ranges. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 254–263. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Har-Peled, S., Smorodinsky, S.: Conflict-free coloring of points and simple regions in the plane. Discrete & Computational Geometry 34(1), 47–70 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6(3), 243–254 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pach, J., Tóth, G.: Conflict-free colorings. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry – The Goodman-Pollack Festschrift. Springer, Heidelberg (2003)

    Google Scholar 

  13. Smorodinsky, S.: Combinatorial Problems in Computational Geometry. PhD thesis, Tel-Aviv University (2003)

    Google Scholar 

  14. Smorodinsky, S.: On the chromatic number of some geometric hypergraphs. In: The 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 316–323 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, J.WT., Chin, F.Y.L., Hong, X., Ting, H.F. (2009). Dynamic Offline Conflict-Free Coloring for Unit Disks. In: Bampis, E., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2008. Lecture Notes in Computer Science, vol 5426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93980-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93980-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93979-5

  • Online ISBN: 978-3-540-93980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics