Interval Type-2 Fuzzy Logic Applications | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 589 Accesses

Abstract

In this chapter three applications of interval type-2 fuzzy logic are considered. First, we consider the use of interval type-2 fuzzy systems in conjunction with modular neural networks for image recognition. A type-2 fuzzy system is used for feature extraction in the training data, and another type-2 fuzzy system is used to find the optimal parameters for the integration method of the modular neural network. Type-2 Fuzzy Logic is shown to be a tool to help improve the results of a neural system by facilitating the representation of the human perception. The second application involves edge detection in digital images, which is a problem that has been solved by means of the application of different techniques from digital signal processing, and also the combination of some of these techniques with type-1 fuzzy systems have been proposed. In this chapter a new interval type-2 fuzzy method is implemented for the detection of edges and the results of three different techniques for the same goal are compared. The third application, concerns the problem of stability, which is one of the more important aspects in the traditional knowledge of Automatic Control. Interval type-2 fuzzy logic is an emerging and promising area for achieving intelligent control (in this case, Fuzzy Control). In this chapter we use the Fuzzy Lyapunov Synthesis, as proposed by Margaliot, to build a Lyapunov stable type-1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy controller, ensuring the stability on the control system and proving the robustness of the corresponding fuzzy controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castillo, O., Aguilar, L., Cazarez, N., Rico, D.: Intelligent Control of Dynamical Systems with Type-2 Fuzzy Logic and stability Study. In: Proceedings of the Conference on Artificial Intelligence (ICAI 2005), pp. 400–405 (2005)

    Google Scholar 

  2. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Hybrid Intelligent Systems: Design and Analysis. Springer, Germany (2007)

    MATH  Google Scholar 

  3. Castro, J.R., Castillo, O., Martínez-Méndez, L.G.: Tool Box para Lógica Difusa Tipo-2 por Intervalos. In: International Seminar on Computational Intelligence, IEEE - CIS Mexico Chapter, Tijuana, Mexico, October 9-11 (CD-rom proceedings) (2006)

    Google Scholar 

  4. Cázarez, N.R., Cárdenas, S., Aguilar, L., Castillo, O.: Lyapunov Stability on Type-2 Fuzzy Logic Control. In: IEEE-CIS International Seminar on Computational Intelligence, México Distrito Federal, México, October 17-18 (Proceedings in CD-rom) (2005)

    Google Scholar 

  5. Chen, G., Pham, T.T.: Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. CRC Press, Boca Raton (2001)

    Google Scholar 

  6. Choi, B.J., Kwak, S.W., Kim, B.K.: Design and Stability Analysis of Single-Input Fuzzy Logic Controller. IEEE Trans. Fuzzy Systems 30, 303–309 (2000)

    Google Scholar 

  7. Chuang, M.-M., Chang, R.-F., Huang, Y.-L.: Automatic, Facial Feature Extraction in Model-based Coding. Journal of Information Science and Engineering 16, 447–458 (2000)

    Google Scholar 

  8. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice-Hall, New York (1995)

    MATH  Google Scholar 

  9. Kolmanovsky, I., McClamroch., N.H.: Developments in Nonholonomic Nontrol Problems. IEEE Control Syst. Mag. 15, 20–36 (1995)

    Article  Google Scholar 

  10. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  11. Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, pp. 525–528. IEEE, Los Alamitos (1999)

    Google Scholar 

  12. Li, H.-X., Gatland, H.B.: A new methodology for designing a fuzzy logic controller. IEEE Trans. Systems Man and Cybernetics 25, 505–512 (1995)

    Article  Google Scholar 

  13. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  14. Mamdani, E.H.: Twenty years of Fuzzy Control: Experiences Gained and Lessons Learned. In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA, pp. 339–344 (1993)

    Google Scholar 

  15. Margaliot, M., Langholz, G.: New Approaches to Fuzzy Modeling and Control. World Scientific Press, Singapore (2000)

    MATH  Google Scholar 

  16. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. Melin, P., Mancilla, A., Lopez, M., Mendoza, O.: A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Journal of Applied Soft Computing (accepted for publication, 2007)

    Google Scholar 

  18. Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Processing Journal 80, 913–933 (2000)

    Article  MATH  Google Scholar 

  19. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, New Jersey (2001)

    MATH  Google Scholar 

  20. Mendoza, O., Melin, P.: The Fuzzy Sugeno Integral as a Decision Operator in the Recognition of Images with Modular Neural Networks. In: International Conference on Fuzzy Systems, Neural Networks and Genetic Algorithms FNG 2005 (Proceedings in CD-rom) (2005)

    Google Scholar 

  21. Mendoza, O., Melin, P.: Sistemas de Inferencia Difusos Tipo-1 y Tipo-2 Aplicados a la Detección de Bordes en Imágenes Digitales. In: International Seminar on Computational Intelligence, IEEE - CIS Mexico Chapter, Tijuana, Mexico, October 9-11, 2006, Tijuana Institute of Technology (CD-rom proceedings) (2006)

    Google Scholar 

  22. Mendoza, O., Melin, P.: The Fuzzy Sugeno Integral as a Decision Operator in the Recognition of Images with Modular Neural Networks. In: Edited Book: Hybrid Intelligent Systems: Design and Analysis, pp. 299–310. Springer, Heidelberg (2007)

    Google Scholar 

  23. Sharkey, A.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems. Springer, London (1999)

    MATH  Google Scholar 

  24. Sugeno, M.: On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents. IEEE Trans. Fuzzy Systems 7(2) (1999)

    Google Scholar 

  25. Wang, L.-X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  26. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning–1. Journal of Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  27. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2) (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castillo, O., Melin, P. (2009). Interval Type-2 Fuzzy Logic Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics