Interpretability of Fuzzy Information Granules | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 547 Accesses

Abstract

Human-Centric Information Processing requires tight communication processes between users and computers. These two actors, however, traditionally use different paradigms for representing and manipulating information. Users are more inclined in managing perceptual information, usually expressed in natural language, whilst computers are formidable number-crunching systems, capable of manipulating information expressed in precise form. Fuzzy information granules could be used as a common interface for communicating information and knowledge, because of their ability of representing perceptual information in a computer manageable form. Nonetheless, this connection could be established only if information granules are interpretable, i.e. they are semantically co-intensive with human knowledge. Interpretable information granulation opens several methodological issues, regarding the representation and manipulation of information granules, the interpretability constraints and the granulation processes. By taking into account all such issues, effective Information Processing systems could be designed with a strong Human-Centric imprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering. Toward Human-Centric Computing. John Wiley & Sons, Hoboken (2007)

    Google Scholar 

  2. Pazzani, M.J.: Knowledge discovery from data? IEEE Intell. Syst. 15(2), 10–12 (2000)

    Article  Google Scholar 

  3. Jaimes, A., Gatica-Perez, D., Sebe, N., Huang, T.S.: Human-Centered Computing–Toward a Human Revolution. IEEE Computer 40(5), 30–34 (2007)

    Google Scholar 

  4. Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Syst. 90, 111–117 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zadeh, L.A.: Graduation and granulation are keys to computation with information described in natural language. In: Proc. of IEEE GrC 2006, p. 30 (2006)

    Google Scholar 

  6. Zadeh, L.A.: Toward Human-Level Machine Intelligence. In: Proc. of SOFA 2007, pp. 9–10 (2007)

    Google Scholar 

  7. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  8. Bargiela, A., Pedrycz, W.: Toward a Theory of Granular Computing for Human-Centered Information Processing. IEEE Trans. on Fuzzy Syst. 16(2), 320–330 (2008)

    Article  Google Scholar 

  9. Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU): an outline. Inf. Sci. 172, 1–2 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zadeh, L.A.: A New Frontier in Computation – Computation with Information Described in Natural Language. In: Proc. of 2006 IEEE Conf. on Intell, pp. 5–6 (2006)

    Google Scholar 

  12. Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2), 169–185 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brandom, R.: Semantic Paradox of Material Implication. Notre Dame J. of Form. Log. 22(2), 129–132 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Türksen, I.B.: An Ontological and Epistemological Perspective of Fuzzy Set Theory. Elsevier, Amsterdam (2005)

    Google Scholar 

  15. Roychowdhury, S.: An Inquiry into the Theory of Defuzzification. In: Pedrycz, W. (ed.) Granular Computing: an Emerging Paradigm, pp. 143–162. Physica-Verlag (2001)

    Google Scholar 

  16. Zhou, Z.H.: Comprehensibility of Data Mining Algorithms. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, Hershey, PA, pp. 190–195 (2005)

    Google Scholar 

  17. Giboin, A.: ML Comprehensibility and KBS explanation: stating the problem collaboratively. In: Proc. of IJCAI 1995 Workshop on Machine Learning and Comprehensibility, pp. 1–11 (1995)

    Google Scholar 

  18. Mencar, C., Castellano, G., Fanelli, A.M.: On the role of interpretability in fuzzy data mining. Int. J. of Uncertain., Fuzziness and Knowl. Based Syst. 15, 521–537 (2007)

    Article  MATH  Google Scholar 

  19. Michalski, R.S.: Knowledge Mining: A Proposed New Direction. In: Proc. of Symp. on Data Mining and Semantic Web (2003), http://www.mli.gmu.edu/papers/2003-2004/03-5.pdf

  20. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Art. Intell. in Medicine 16(2), 121–128 (1999)

    Article  Google Scholar 

  21. Guillaim, S.: Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 9(3), 426–443 (2001)

    Article  Google Scholar 

  22. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20, 111–161 (1983)

    Article  MathSciNet  Google Scholar 

  23. Johansson, U., Niklasson, L., Knig, R.: Accuracy vs. Comprehensibility in Data Mining Models. In: Proc. of the 7th Int. Conf. on Inform. Fusion, pp. 295–300 (2004)

    Google Scholar 

  24. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63, 81–97 (1956), http://www.well.com/user/smalin/miller.html (electronic reproduction by Stephen Malinowski)

    Article  Google Scholar 

  25. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Syst., Man and Cybern. 3(1), 28–44 (1973)

    MATH  MathSciNet  Google Scholar 

  26. Pham, B., Brown, R.: Visualisation of fuzzy systems: requirements, techniques and framework. Future Gener. Comput. Syst 21(7), 1199–1212 (2005)

    Article  Google Scholar 

  27. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a Fuzzy Logic controller. Int. J. of Human-Comput. Studies 51(2), 135–147 (1999)

    Article  Google Scholar 

  28. Roychowdhury, R., Pedrycz, W.: A survey of defuzzification strategies. Int. J.of Intell. Syst. 16(6), 679–695 (2001)

    Article  MATH  Google Scholar 

  29. van de Merckt, T., Decaestecker, C.: Multiple- Knowledge Representations in Concept Learning. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS (LNAI), vol. 912, pp. 200–217. Springer, Heidelberg (1995)

    Google Scholar 

  30. Domingos, P.: Knowledge Discovery Via Multiple Models. Intell. Data Analysis 2(3), 187–202 (1998)

    Article  Google Scholar 

  31. Sun, R., Slusarz, P., Terry, C.: The Interaction of the Explicit and the Implicit in Skill Learning: A Dual-Process Approach. Psych. Rev. 112(1), 159–192

    Google Scholar 

  32. Stadler, M., Frensch, P.: Handbook of implicit learning. Sage, Thousand Oaks (1998)

    Google Scholar 

  33. Pedrycz, W.: Knowledge Based Clustering: from Data to Information Granules. John Wiley & Sons, Hoboken (2005)

    MATH  Google Scholar 

  34. Mencar, C., Castellano, G., Fanelli, A.M.: Balancing Interpretability and Accuracy by Multi-Level Fuzzy Information Granulation. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 2157–2163 (2006)

    Google Scholar 

  35. Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Inf. Sci. 178(24), 4585–4618 (2008)

    Article  Google Scholar 

  36. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  37. Garibaldi, J.M., Musikasuwan, S., Ozen, T., John, R.I.: A Case Study to Illustrate the Use of Non-Convex Membership Functions for Linguistic Terms. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., vol. 3, pp. 1403–1408 (2004)

    Google Scholar 

  38. Zadeh, L.A.: The concept of Linguistic Variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  39. Bodenhofer, U., Bauer, P.: Interpretability of linguistic variables: a formal account. Kybernetika 41(2), 227–248 (2005)

    MathSciNet  Google Scholar 

  40. Gegov, A.: Complexity Management in Fuzzy Systems: A Rule Base Compression Approach. Studies in Fuzziness and Soft Computing, vol. 211. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  41. de Oliveira, J.V.: Semantic constraints for membership function optimization. IEEE Trans. on Syst., Man and Cybern. A 29(1), 128–138 (1999)

    Article  Google Scholar 

  42. Roubos, H., Setnes, M.: Compact fuzzy models through complexity reduction and evolutionary optimization. In: Proc. of 9th IEEE Int. Conf. on Fuzzy Syst., vol. 2, pp. 762–767 (2000)

    Google Scholar 

  43. Mencar, C., Castellano, G., Fanelli, A.M.: Distinguishability quantification of fuzzy sets. Inform. Sci. 177, 30–149 (2007)

    Article  Google Scholar 

  44. de Oliveira, J.V.: Towards neuro-linguistic modeling: Constraints for optimization of membership functions. Fuzzy Sets and Syst. 106, 357–380 (1999)

    Article  MATH  Google Scholar 

  45. Hermann, C.S.: Symbolic reasoning about numerical data: A hybrid approach. Appl. Intell. 7, 339–354 (1997)

    Article  MathSciNet  Google Scholar 

  46. Jin, Y., Von Seelen, W., Sendhoff, B.: On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans. on Syst., Man and Cybern. B 29(6), 829–845 (1999)

    Article  Google Scholar 

  47. Peña-Reyes, C., Sipper, M.: Fuzzy CoCo: Balancing Accuracy and Interpretability of Fuzzy Models by Means of Coevolution. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Accuracy Improvements in Linguistic Fuzzy Modeling, pp. 119–146. Springer, Heidelberg (2003)

    Google Scholar 

  48. Perfilieva, I., Lehmke, S.: Correct models of fuzzy IF–THEN rules are continuous. Fuzzy Sets and Syst. 157(24), 3188–3197 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Dubois, D., Prade, H., Ughetto, L.: Checking the Coherence and Redundancy of Fuzzy Knowledge Bases. IEEE Trans. on Fuzzy Syst. 5(3), 398–417 (1997)

    Article  Google Scholar 

  50. Guillaume, S.: Designing Fuzzy Inference Systems from Data: An Interpretability-Oriented Review. IEEE Trans. on Fuzzy Syst. 9(3), 426–443 (2001)

    Article  MathSciNet  Google Scholar 

  51. Guillaume, S., Charnomordic, B.: Generating an Interpretable Family of Fuzzy Partitions From Data. IEEE Trans. on Fuzzy Syst. 12(3), 324–335 (2004)

    Article  Google Scholar 

  52. de Oliveira, J.V.: Towards neuro-linguistic modeling: Constraints for optimization of membership functions. Fuzzy Sets and Syst. 106(3), 357–380 (1999)

    Article  MATH  Google Scholar 

  53. Nauck, D.D.: Fuzzy data analysis with NEFCLASS. Int. J. on Approx. Reason. 32(2-3), 103–130 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mikut, R., Jäkel, J., Gröll, L.: Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Syst. 150(2), 179–197 (2005)

    Article  MATH  Google Scholar 

  55. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition. Parts I & II. IEEE Trans. on Syst., Man, and Cybern. B 29(6), 778–801 (1999)

    Article  Google Scholar 

  56. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. on Fuzzy Syst. 9(4), 516–524 (2001)

    Article  Google Scholar 

  57. Castellano, G., Fanelli, A.M., Mencar, C.: DCf: a double clustering framework for fuzzy information granulation. In: Proc. of IEEE Intern. Conf. on Granular Comput., vol. 2, pp. 397–400 (2005)

    Google Scholar 

  58. Castellano, G., Fanelli, A.M., Mencar, C., Plantamura, V.: Classifying data with interpretable fuzzy granulation. In: Proc. of SCIS&ISIS, pp. 872–877 (2006)

    Google Scholar 

  59. Mencar, C., Consiglio, A., Fanelli, A.M.: DCγ: Interpretable Granulation of Data through GA-based Double Clustering. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 1–6 (2007)

    Google Scholar 

  60. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. of Approx. Reason. 44, 4–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Riid, A., Rustern, E.: Interpretability of Fuzzy Systems and Its Application to Process Control. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 1–6 (2007)

    Google Scholar 

  62. Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inform. Sci. 177, 988–1006 (2007)

    Article  MathSciNet  Google Scholar 

  63. Novák, V., Perfilieva, I., Dvorǎk, A., Chen, G., Wei, Q., Yan, P.: Mining pure linguistic associations from numerical data. Int. J. on Approx. Reason. 48, 4–22 (2008)

    Article  Google Scholar 

  64. Herrera, F., Herrera-Viedma, E., Martínez, L.: A Fuzzy Linguistic Methodology to Deal With Unbalanced Linguistic Term Sets. IEEE Trans. on Fuzzy Syst. 16(2), 354–370 (2008)

    Article  Google Scholar 

  65. Drobics, M., Himmelbauer, J.: Creating comprehensible regression models. Soft. Comput. 11, 421–438 (2007)

    Article  Google Scholar 

  66. Dimitrov, V., Russell, D.: The Fuzziness of Communication. Fell L, Russell D, Stewart A, Seized by Agreement, Swamped by Understanding. Hawkesbury Printing, University of Western Sydney. (1994), http://www.univie.ac.at/constructivism/pub/seized/fuzcom.html

  67. Cowan, N., Morey, C.C., Chen, Z.: The legend of the magical number seven. In: Della Sala, S. (ed.) Tall Tales about the Mind and Brain - Separating Fact from Fiction, pp. 45–59. Oxford University Press, Oxford (2007)

    Google Scholar 

  68. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Sys 90(2), 141–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mencar, C. (2009). Interpretability of Fuzzy Information Granules. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics