Concept Granular Computing Based on Lattice Theoretic Setting | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 545 Accesses

Abstract

Based on the theory of concept lattice and fuzzy concept lattice, a mathematical model of a concept granular computing system is established, and relationships of the system and concept lattices, various variable threshold concept lattices and fuzzy concept lattices are then investigated. For this system, concept granules, sufficiency information granules and necessity information granules which are used to express different relations between a set of objects and a set of attributes are proposed. Approaches to construct sufficiency and necessity information granules are also shown. Some iterative algorithms to form concept granules are proposed. It is proved that the concept granules obtained by the iterative algorithms are the sub-concept granules or sup-concept granules under some conditions for this system. Finally, we give rough approximations based on fuzzy concept lattice in formal concept analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belohlavek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York (2002)

    MATH  Google Scholar 

  3. Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belohlavek, R., Sklenar, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS, vol. 3403, pp. 269–284. Springer, Heidelberg (2005)

    Google Scholar 

  5. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: The IEEE International Conference on Fuzzy Systems, USA, pp. 663–668 (2005)

    Google Scholar 

  6. Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proceedings of CLA 2005, 3rd International Conference on Concept Lattices and their Applications, Olomouc, Czech Republic, pp. 34–45 (2005)

    Google Scholar 

  7. Belohlavek, R.: A note on variable threshold concept lattices: threshold-based operators are reducible to classical concept-forming operators. Information Sciences 177, 3186–3191 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burusco, A., Fuentes-Gonzales, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing I(3), 209–218 (1994)

    Google Scholar 

  9. Burusco, A., Fuentes-Gonzales, R.: Concept lattices defined from implication operators. Fuzzy Sets and Systems 114, 431–436 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burusco, A., Fuentes-Gonzales, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and Systems 97, 109–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chaudron, L., Maille, N.: Generalized formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Chen, D.G., Zhang, W.X., Yeung, D., et al.: Rough approximations on a completely distributive lattice with applications to generalized rough sets. Information Science 176(13), 1829–1948 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deogun, J.S., Saqer, J.: Monotone concepts for formal concept analysis. Discrete Applied Mathematics 144, 70–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dubois, D., Prade, H.: Twofold fuzzy sets and rough sets—some issues in knowledge representation. Fuzzy Sets and Systems 23, 3–18 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duntsch, I., Gediga, G.: Modal-style operators in qualitative data analysis. In: Proc. 2002 IEEE Inter. Conf. on Data Mining, pp. 155–162 (2002)

    Google Scholar 

  16. Elloumi, S., Jaam, J., Hasnah, A., et al.: A multi-level conceptual data reduction approach based in the Lukasiewicz implication. Information Sciences 163(4), 253–262 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fan, S.Q., Zhang, W.X., Xu, W.: Fuzzy inference based on fuzzy concept lattice. Fuzzy Sets and Systems 157, 3177–3187 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematic Logic 43(8), 1009–1039 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Hobbs, J.R.: Granularity. In: Proc of IJCAI, Los Angeles, pp. 432–435 (1985)

    Google Scholar 

  21. Hu, K., Sui, Y., Lu, Y., et al.: Concept approximation in concept lattice. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 167–173. Springer, Heidelberg (2001)

    Google Scholar 

  22. Jaoua, A., Elloumi, S.: Galois connection, formal concept and Galois lattice in real binary relation. Journal of Systems and Software 60(2), 149–163 (2002)

    Article  Google Scholar 

  23. Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fund. Inform. 27, 169–181 (1996)

    MATH  MathSciNet  Google Scholar 

  24. Krajci, S.: Cluster based efficient generation of fuzzy concepts. Neural Network World 5, 521–530 (2003)

    Google Scholar 

  25. Latiri, C.C., Elloumi, S., Chevallet, J.P., et al.: Extension of fuzzy Galois connection for information retrieval using a fuzzy quantifier. In: ACS/IEEE International Conference on Computer Systems and Applications, Tunis, Tunisia (2003)

    Google Scholar 

  26. Ma, J.M., Zhang, W.X., Leung, Y., et al.: Granular computing and dual Galois connection. Information Science 177, 5365–5377 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morsi, N.N., Yakout, M.M.: Axiomatic for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Popescu, A.: A general approach to fuzzy concepts. Mathematical Logic Quarterly 50(3), 1–17 (2001)

    Google Scholar 

  29. Qiu, G.F.: Learning models based on formal context. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS, vol. 4481, pp. 419–426. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Saquer, J., Deogun, J.S.: Formal rough concept analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 91–99. Springer, Heidelberg (1999)

    Google Scholar 

  31. Shao, M.W., Liu, M., Zhang, W.X.: Set approximations in fuzzy formal concept analysis. Fuzzy Sets and Systems 158, 2627–2640 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. International Journal of Intelligent Systems 16, 57–85 (2001)

    Article  MATH  Google Scholar 

  33. Wang, G.J.: Non-Classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing (2000)

    Google Scholar 

  34. Wang, G.J., Zhang, W.X.: Consistency degree of finite theories in Lukasiwicz propositional fuzzy logic. Fuzzy Sets and Systems 149, 275–284 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, H., Zhang, W.X.: Relationships between concept lattice and rough set. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 538–547. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Ward, M., Dilworth, R.P.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  38. Wolff, K.E.: A conceptual view of knowledge bases in rough set theory. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 220–228. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  39. Wu, W.Z., Mi, J.S., Zhang, W.X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 167–190. Physica-Verlag (2001)

    Google Scholar 

  41. Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)

    Article  MATH  Google Scholar 

  42. Yao, Y.Y.: Concept lattices in rough set theory. In: Proc. 2004 Annu. Meeting of the North American Fuzzy Information Processing Society, pp. 796–801 (2004)

    Google Scholar 

  43. Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 59–68. Springer, Heidelberg (2004)

    Google Scholar 

  44. Yao, Y.Y., Chen, Y.: Rough set approximations in formal concept analysis. In: 2004 Annu. Meeting of the North American Fuzzy Information Processing Society, pp. 73–78 (2004)

    Google Scholar 

  45. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Yager, R. (eds.) Advances in Fuzzy Set Theory and Application, pp. 3–18. Northholland, Amsterdam (1979)

    Google Scholar 

  46. Zadeh, L.A.: Fuzzy logic-computing with words. IEEE Transactions on Fuzzy Systems 4, 103–111 (1996)

    Article  Google Scholar 

  47. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)

    Article  MathSciNet  Google Scholar 

  48. Zhang, W.X., Leung, Y., Wu, W.Z.: Information Systems and Knowledge Discovery. Science Press, Beijing (2003)

    Google Scholar 

  49. Zhang, W.X., Qiu, G.F.: Uncertain Decision Making Based on Rough Sets. Tsinghua University Press, Beijing (2003)

    Google Scholar 

  50. Zhang, W.X., Wei, L., Qi, J.J.: Attribute reduction theory and approach to concept lattice. Science in China Series F-Information Sciences, vol. 48(b), pp. 713–726 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Wx., Yang, Hz., Ma, Jm., Qiu, Gf. (2009). Concept Granular Computing Based on Lattice Theoretic Setting. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics