Visualizing Huge Image Databases by Formal Concept Analysis | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 537 Accesses

Abstract

Based on formal concept analysis we propose a novel lattice visualization system for huge image databases as a realization of the important paradigm of human-centered information processing based on granular computing. From a given cross table of objects (images) and attributes (image features) the proposed system first constructs a concept lattice. Then the Hasse diagram of this lattice is visualized. The information granules in the proposed system correspond to the elements of the concept lattice. All the important components of granular computing are shown to be present in the proposed system, such as: abstraction of data, derivation of knowledge and empirical verification of the abstraction. Since formal concept analysis generates an order relation, we obtain a hierarchical structure of concepts. This structure is shown to be also strongly related to the granular computing, since this is how the lattice visualization system implements the zoom in and zoom out capability of granular computing systems. Using the proposed system, a user can freely analyze the perspective and detailed structure of a large image database in the setting of granular computing. Furthermore, through an interaction function, the potential user can adjust the quantization of features, being able in this way, to select the attributes which allow him to obtain a suitable concept lattice. Therefore, the proposed system can be regarded as a promising human-centric information processing algorithm, based on granular computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bargiela, A., Pedrycz, W.: Granular Computing – An Introduction. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  2. Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems 16, 320–330 (2008)

    Article  Google Scholar 

  3. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Plenum Pub. Corp. (2002)

    Google Scholar 

  4. Boutell, M., Luo, J.: Beyond Pixels: Exploiting Camera Metadata for Photo Classification. Pattern Recognition 38, 935–946 (2005)

    Article  Google Scholar 

  5. Chen, C.: Information Visualization: Beyond The Horizon. Springer, Heidelberg (2006)

    Google Scholar 

  6. Cooper, M., et al.: Temporal Event Clustering for Digital Photo Collections. ACM Transactions on Multimedia Computing, Communications and Applications 1(3), 269–288 (2005)

    Article  Google Scholar 

  7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Fry, B.: Visualizing Data. O’Reilly, Sebastopol (2008)

    Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley, Reading (2002)

    Google Scholar 

  11. Kaburlasos, V.G., Ritter, G.X. (eds.): Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence, vol. 67. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  12. Konar, A.: Computational Intelligence. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. Lin, T.Y.: Granular computing on binary relations. In: Polkowski, L., Skowron, A. (eds.) Rough sets in knowledge discowery: Methodology and applications, pp. 286–318. Physica-Verlag, Heildelberg (1998)

    Google Scholar 

  14. Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Information Sciences 178, 4585–4618 (2008)

    Article  Google Scholar 

  15. Pal, S.K., Mitra, P.: Multispectral image segmentation using rough set initialized EM algorithm. IEEE Trans. Geosci. Remote Sensing 40, 2495–2501 (2002)

    Article  Google Scholar 

  16. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26, 2509–2517 (2005)

    Article  Google Scholar 

  17. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. Bradford Books (1998)

    Google Scholar 

  18. Reas, C., Fry, B.: Processing. MIT Press, Cambridge (2007)

    Google Scholar 

  19. Singh, R., Vatsa, M., Noore, A.: Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition. Pattern Recognition 41, 880–893 (2008)

    Article  MATH  Google Scholar 

  20. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  21. Yao, Y.Y.: Granular Computing, Computer Science. In: Proceedings of The 4th Chinese National Conference on Rough Sets and Soft Computing, vol. 31, pp. 1–5 (2004)

    Google Scholar 

  22. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zadeh, L.: Toward a theory of fuzzy granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zadeh, L.: Is there a need for fuzzy logic? Information Sciences 178, 2751–2779 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf

  26. http://research.nii.ac.jp/i-explosion/

  27. http://www.view-hokkaido.jp/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawase, K., Nobuhara, H., Bede, B. (2009). Visualizing Huge Image Databases by Formal Concept Analysis. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics