Uncertain Identification Problems in the Context of Granular Computing | SpringerLink
Skip to main content

Uncertain Identification Problems in the Context of Granular Computing

  • Chapter
Human-Centric Information Processing Through Granular Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

The chapter is devoted to applications of selected methods of computational intelligence: evolutionary algorithms and artificial neural networks, in identification of physical systems being under the uncertain conditions. Uncertainties can occur in boundary conditions, in material coefficients or some geometrical parameters of systems and are modeled by three kinds of granularity: interval mathematics, fuzzy sets and theory of probability. In order to evaluate fitness functions the interval, fuzzy and stochastic finite element methods are applied to solve granular boundary-value problems for considered physical systems. Several numerical tests and examples of identification of uncertain parameters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)

    Google Scholar 

  2. Bargiela, A., Pedrycz, W.: Granular Computing: An introduction. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  3. Beluch, W., Burczyński, T., Orantek, P.: The Two-Stage Fuzzy Strategy in identification of laminates elastic constants. In: The Proceedings of the CMM 2007 Conference, Lodz-Spala (2007)

    Google Scholar 

  4. Bui, H.D.: Inverse Problems in the Mechanics of Materials: An Instroduction. CRC Press, Bocca Raton (1994)

    Google Scholar 

  5. Burczyński, T., Beluch, W., Długosz, A., Orantek, P., Skrobol, A.: Inteligent computing in inverse problems. Computer Assisted Mechanics and Engineering Sciences 13, 161–206 (2006)

    Google Scholar 

  6. Burczyński, T., Długosz, A., Dziatkiewicz, G., Orantek, P.: Identification of the uncertain parameters in coupled problems. In: The Proceedings of the CMM 2007 Conference, CD-Edition, Lodz-Spala (2007)

    Google Scholar 

  7. Burczynski, T., Orantek, P., Kuś, W., Górski, R., Poteralski, A., Szczepanik, M.: The identification of uncertain parameters in mechanical structures. In: The Proceedings of the CMM 2007 Conference, CD-Edition, Lodz-Spala (2007)

    Google Scholar 

  8. Burczyński, T., Skrzypczyk, J.: Fuzzy aspects of the boundary element method. Engineering Analysis with Boundary Elements 19, 209–216 (1997)

    Article  Google Scholar 

  9. Burczyński, T., Skrzypczyk, J.: Theoretical and Computational Aspects of the Stochastic Boundary Element Method. Computer Methods in Applied Mechanics and Engineering 168, 321–344 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems:current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  12. Czogała, E., Pedrycz, W.: Elements and Methods of Theory of Fuzzy Sets. PWN, Warsaw (1985)

    Google Scholar 

  13. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1988)

    Google Scholar 

  14. Kleiber, M., Hien, T.D.: Stochastic Finite Element Method. John Willey & Sons, New York (1992)

    MATH  Google Scholar 

  15. Littman, M., Ackley, D.: Adaptation in constant utility nonstationary environment. In: Proc. International Conference on Genetic Algorithms (1994)

    Google Scholar 

  16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolutionary Programs. Springer, Berlin (1996)

    Google Scholar 

  17. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM Press, Philadelphia (2009)

    Google Scholar 

  18. Orantek, P.: An intelligent computing technique in identification problems. Computer Assisted Mechanics and Engineering Sciences 13, 351–364 (2006)

    Google Scholar 

  19. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York (1991)

    Google Scholar 

  20. Pedrycz, W.: Fuzzy evolutionary computing. Soft Computing 2 (1998)

    Google Scholar 

  21. Pedrycz, W.: Computational Intelligence: An Introduction. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  22. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    MATH  Google Scholar 

  23. Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery. Methodology and Applications, vol. I. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  24. Zadeh, L.A., Kacprzyk, J.: Computing with Words in Information/IntelligentSystems, vol. 1-2. Physica-Verlag, Heidelberg (1999)

    Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burczyński, T., Orantek, P. (2009). Uncertain Identification Problems in the Context of Granular Computing. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics