Abstract
Analysis of gene interaction networks is crucial for understanding fundamental cellular processes involving growth, development, hormone secretion and cellular communication.A gene interaction network comprises of proteins and genes binding to each other, and acting as a complex input-output system for controlling cellular functions. A small set of genes take part in a cellular process of interest, while a single gene may be involved in more than one cellular process at the same time. Soft computing is a consortium of methodologies that works synergistically and provides flexible information processing capability for handling real life ambiguous situations. The tools include fuzzy sets, evolutionary computing, neurocomputing, and their hybridizations. We discuss some existing literature pertaining to the use of soft computing and other classical methodologies in the reverse engineering of gene interaction networks. As a case study we describe here a soft computing based strategy for biclustering and the use of rank correlation, for extracting rank correlated gene interaction sub-networks from microarray data. Experimental results on time series gene expression data from Yeast were biologically validated based on standard databases and information from literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mitra, S., Pedrycz, W. (eds.): Special Issue on Bioinformatics. Pattern Recognition 39 (2006)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences USA 95, 14863–14868 (1998)
Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)
Gasch, A.P., Eisen, M.B.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3:research 0059.1-0059.22 (2002)
Ji, L., Tan, K.L.: Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21, 509–516 (2005)
Madeira, S.C., Oliveira, A.L.: A Linear Time Biclustering Algorithm for Time Series Gene Expression Data. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 39–52. Springer, Heidelberg (2005)
Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)
Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren, D., Tsoka, S., Darzentas, N., Kunin, V., Lopez-Bigas, N.: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 19, 6083–6089 (2005)
Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research 33, 334–337 (2005)
Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-Peredo, E., Sanchez-Solano, F., Santos-Zavaleta, A., Martinez-Flores, I., Jimenez-Jacinto, V., Bonavides-Martinez, C., Segura-Salazar, J., Martinez-Antonio, A., Collado-Vides, J.: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Research 34, D394–D397 (2006)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology, the gene ontology consortium. Nature Genetics 25, 25–29 (2000)
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto En-cyclopedia of Genes Genomes. Nucleic Acids Research 27, 29–34 (1999)
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.-L.: The large scale organization of metabolic networks. Nature 407, 651–654 (2000)
de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)
D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)
Thieffry, D., Huerta, A.M., P´erez-Rueda, E., Collado-Vides, J.: From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440 (1998)
Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)
Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)
Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proceedings of Pacific Symposium on Biocomputing, pp. 17–28 (1999)
Liang, S., Somogyi, F.S.: Somogyi Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Proceedings of Pacific Symposium on Biocomputing, pp. 18–29 (1998)
Martin, S., Zhang, Z., Martino, A., Faulon, J.-L.: Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23, 866–874 (2007)
Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)
Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 4, 102–105 (2003)
de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE Transactions on Computational Biology and Bioinformatics 5, 208–222 (2008)
Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79 (2005)
Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)
Kwon, A.T., Hoos, H.H., Ng, R.: Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19, 905–912 (2003)
Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models for gene expression. Bioinformatics 17, S243–S252 (2001)
Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gordon, D.B.: E Fraenkel, Jaahhola TS, Young RA, Gifford DK Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003)
Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)
Reiss, D.J., Baliga, N.S., Bonneau, R.: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7, 280 (2006)
Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37, 77–84 (1994)
Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York (2003)
Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley, England (2008)
Bargiela, A., Pedrycz, W.: Toward a Theory of Granular Computing for Human-Centered Information Processing. IEEE Transactions on Fuzzy Systems 16, 320–330 (2008)
Takahashi, H., Tomida, S., Kobayashi, T., Honda, H.: Inference of common genetic network using fuzzy adaptive resonance theory associated matrix method. Journal of Bioscience and Bioengineering 96, 154–160 (2003)
Woolf, P.J., Wang, Y.: A fuzzy logic approach to analyzing gene expression data. Physiol Genomics 3, 9–15 (2000)
Du, P., Gong, J., Wurtele, E.S., Dickerson, J.A.: Modeling gene expression networks using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 35, 1351–1359 (2005)
Kim, S., Dougherty, E.R., Chen, Y., Sivakumar, K., Meltzer, P., Trent, J.M., Bittner, M.: Multivariate Measurement of Gene Expression Relationships. Genomics 67, 201–209 (2000)
Huang, J., Shimizu, H., Shioya, S.: Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks. J Biosci. Bioeng. 96, 421–428 (2003)
Ressom, H., Wang, D., Natarajan, P.: Clustering gene expression data using adaptive double self-organizing map. Physiol. Genomics 14, 35–46 (2003)
Toronen, P., Kolehmainen, M., Wong, G., Castren, E.: Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146 (1999)
Vohradsky, J.: Neural network model of gene expression. FASEB Journal 15, 846–854 (2001)
Weaver, D.C., Workman, C.T., Stormo, G.D.: Modelling regulatory networks with weight matrices. In: Proceedings of Pacific Symposium on Biocomputing, pp. 112–123 (1999)
Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19, 643–650 (2003)
Xiong, M., Li, J., Fang, X.: Identification of genetic networks. Genetics 166, 1037–1052 (2004)
Iba, H., Mimura, A.: Inference of a gene regulatory network by means of interactive evolutionary computing. Information Science 145, 225–236 (2002)
Keedwell, E., Narayanan, A.: Discovering gene networks with a neural-genetic hybrid. IEEE Transactions on Computational Biology and Bioinformatics 2, 231–242 (2005)
Kasabov, N.K.: Knowledge-based neural networks for gene expression data analysis modelling and profile discovery. Biosilico 2, 253–261 (2004)
Cotik, V., Zaliz, R.R., Zwir, I.: A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy Sets and Systems 152, 83–102 (2005)
Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Molecular Systems Biology 3, 1–10 (2007)
Zhang, Y., Zha, H., Chu, C.H.: A time-series biclustering algorithm for revealing co-regulated genes. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2005), pp. 1–6 (2005)
Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)
Balasubramaniyan, R., Hllermeier, E., Weskamp, N., Kamper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077 (2005)
Das, R., Mitra, S., Banka, H., Mukhopadhyay, S.: Evolutionary biclustering with correlation for gene interaction networks. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 416–424. Springer, Heidelberg (2007)
Davies, G.R., Yoder, D.: Business Statistics. John Wiley & Sons, Inc., London (1937)
Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)
Bo, T.H., Dysvik, B., Jonassen, I.: Lsimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32, 1–8 (2004)
Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Das, R., Mitra, S. (2009). Gene Interactions Sub-networks and Soft Computing. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)