Rough-Granular Computing in Human-Centric Information Processing | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

In ubiquitous computing, users are expected to continuously interact with computing devices, to suggest strategies and hypotheses, to pass over new facts from domain knowledge, to explain untypical cases in dialogs with the devices, etc. These devices therefore need to, at least in an approximate sense, understand the compound, vague concepts used by humans. We discuss current results and research directions on the approximation of compound vague concepts, which are based on rough-granular computing. In particular, we use hierarchical methods for the approximation of domain ontologies of vague concepts. We also discuss an extension of the proposed approach for approximate reasoning about interactive computations performed on complex granules by systems of agents in dynamically changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp. 37–46. ACM Press, New York (2001)

    Chapter  Google Scholar 

  2. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  3. Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley and Sons Ltd, Chichester (1978)

    MATH  Google Scholar 

  4. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  5. Bazan, J.: Rough sets and granular computing in behavioral pattern identification and planning. In: Pedrycz, et al. (eds.) [39], pp. 777–800.

    Google Scholar 

  6. Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Automatic planning of treatment of infants with respiratory failure through rough set modeling. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 418–427. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In: Proceedings of Information Processing and Management under Uncertainty in Knowledge-Based Systems (IPMU 2006), Paris, France, July 2-7, 2006, vol. (3), pp. 2650–2657. Editions E.D.K. (2006)

    Google Scholar 

  8. Bazan, J., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS, vol. 3642, pp. 688–697. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Bazan, J., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Kȩplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Bazan, J.G., Skowron, A., Świniarski, R.W.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–62. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  12. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000), http://portal.acm.org/citation.cfm?id=335191.335388

    Article  Google Scholar 

  13. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Artificial Intelligence 13, 227–303 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques: A Rough Set Approach. Studies in Fuzziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  15. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, New York (2003)

    Google Scholar 

  16. Foster, I.: Service-oriented science. science 308, 814–817 (2005)

    Article  Google Scholar 

  17. Gärdenfors, P.: The Geometry of Thought. MIT Press, Cambridge (2000)

    Google Scholar 

  18. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  19. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004), http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

    Article  MATH  Google Scholar 

  20. Jankowski, A., Peters, J., Skowron, A., Stepaniuk, J.: Optimization in discovery of compound granules. Fundamenta Informaticae 85(1-4), 249–265 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Jankowski, A., Skowron, A.: A wistech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)

    Google Scholar 

  23. Jiang, F., Sui, Y., Cao, C.: Outlier detection using rough set theory. In: Slezak, D., Wang, M.D.I., Szczuka, G., Yao, Y. (eds.) 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, pp. 79–87 (2005)

    Google Scholar 

  24. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 227–303 (1996)

    Google Scholar 

  25. Kleinberg, J., Papadimitriou, C., Raghavan, P.: A microeconomic view of data mining. Data Mining and Knowledge Discovery 2, 311–324 (1998)

    Article  Google Scholar 

  26. Knorr, E.M.: Outliers and data mining: Finding exceptions in data. Ph.D. thesis, University of British Columbia (2002)

    Google Scholar 

  27. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. In: VLDB 1999: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 211–222. Morgan Kaufmann, San Francisco (1999), http://portal.acm.org/citation.cfm?id=671529

    Google Scholar 

  28. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: Algorithms and applications. The VLDB Journal 8(3), 237–253 (2000)

    Article  Google Scholar 

  29. McGovern, A.: Autonomous Discovery of Temporal Abstractions from Interaction with an Environment. University of Massachusetts, Amherst, MA, PhD thesis (2002)

    Google Scholar 

  30. Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, pp. 1–30. IGI Global, Hershey, PA (submitted, 2008)

    Google Scholar 

  31. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    Google Scholar 

  32. Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 762–767. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Nguyen, T.T., Paddon, C.P.W.D.J., Nguyen, S.H., Nguyen, H.S.: Learning sunspot classification. Fundamenta Informaticae 72(1-3), 295–309 (2006)

    MATH  MathSciNet  Google Scholar 

  34. Oliveira, L., Sabourin, R., Bortolozzi, F., Suen, C.: Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Proc. 16th International Conference on Pattern Recognition (ICPR 2002), pp. 568–571. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  35. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Berlin (2004)

    MATH  Google Scholar 

  36. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  37. Pawlak, Z., Skowron, A.: Rudiments of rough sets; Rough sets: Some extensions; Rough sets and boolean reasoning. Information Sciences 177(1), 3–27, 28–40, 41–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pedrycz, W. (ed.): Granular Computing. Physica-Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  39. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)

    Google Scholar 

  40. Peters, J.F.: Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 153–174. Springer, Heidelberg (2004)

    Google Scholar 

  41. Peters, J.F.: Near sets: General theory about nearness of objects. Applied Mathematical Sciences 1(53), 2609–2629 (2007)

    MATH  MathSciNet  Google Scholar 

  42. Peters, J.F.: Discovery of perceptually near information granules. In: J. Yao (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. Information Science Reference, Hersey, NY (to appear, 2008)

    Google Scholar 

  43. Peters, J.F., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71, 323–349 (2006)

    MATH  MathSciNet  Google Scholar 

  44. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of objects: Extension of approximation space model. Fundamenta Informaticae 79(3-4), 497–512 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 51, 333–365 (1996)

    Article  MathSciNet  Google Scholar 

  46. Polkowski, L., Skowron, A.: Constructing rough mereological granules of classifying rules and classifying algorithms. In: Bouchon-Meunier, B., Gutierrez-Rios, J., Magdalena, L., Yager, R.R., Kacprzyk, J. (eds.) Technologies for Constructing Intelligent Systems I, pp. 57–70. Physica-Verlag (2002)

    Google Scholar 

  47. Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. John Wiley & Sons, New York (1985)

    Google Scholar 

  48. Skowron, A.: Approximate reasoning in distributed environments. In: Zhong, Liu (eds.) [65], pp. 433–474

    Google Scholar 

  49. Skowron, A.: Rough sets in perception-based computing. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 21–29. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  50. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  51. Skowron, A.: Information granules and rough-neural computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies, pp. 43–84. Springer, Heidelberg (2003)

    Google Scholar 

  52. Skowron, A., Stepaniuk, J.: Rough sets and granular computing: Toward rough-granular computing. In: Pedrycz, et al. (eds.) [39], pp. 425–448.

    Google Scholar 

  53. Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)

    MATH  MathSciNet  Google Scholar 

  54. Skowron, A., Stepaniuk, J., Peters, J.F.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 54(2–3), 263–277 (2003)

    MATH  MathSciNet  Google Scholar 

  55. Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4), 351–366 (2004)

    MATH  MathSciNet  Google Scholar 

  56. Ślȩzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3–4), 365–387 (2002)

    MathSciNet  Google Scholar 

  57. Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)

    Google Scholar 

  58. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  59. Van Wezel, W., Jorna, R., Meystel, A.: Automated Planning: Theory and Practice. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  60. Vapnik, V.: Statisctical Learning Theory. John Wiley & Sons, Chichester (1998)

    Google Scholar 

  61. Vapnik, V.N.: The Nature of Statistical Learning Theory (Information Science and Statistics). Springer, Heidelberg (1999)

    Google Scholar 

  62. Zadeh, L.A.: A new direction in AI - toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)

    Google Scholar 

  63. Zadeh, L.A.: From imprecise to granular probabilities. Fuzzy Sets and Systems 154(3), 370–374 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  64. Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics and Data Analysis 51, 15–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhong, N., Liu, J. (eds.): Intelligent Technologies for Information Analysis. Springer, Heidelberg (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, T.T., Skowron, A. (2009). Rough-Granular Computing in Human-Centric Information Processing. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics