Abstract
Particle Swarm Optimization is a promising evolutionary optimization algorithm. In this paper, an improved hybrid multi-objective particle swarm optimization algorithm (IHMOPSO) is proposed. IHMOPSO uses orthogonal design to initialize population, selects global optimal position from Pareto set. Apply mutation, cross operation and evolutionary selection, and uses two ways to update the position and velocity of particles. Experimental results on many well-known benchmark optimization problems have shown that IHMOPSO is effective and efficient.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

References
Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory(TIK), Swiss Federal Institute of Technology(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Kennedy, J., Eberhar, R.: Particle Swarm Optimization. In: Proceedings of the Fourth IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)
Moore, J., Chapman, R.: Application of particle swarm to multi-objective optimization. Department of Computer Science and Software Engineering, Auburn University (1999)
Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)
Coello, C., Lechunga, M.: MOPSO: A proposal for Multiple Objective Particle Swarm Optimization. In: Proceedings of 2002 Congress on Evolutionary Computation, pp. 1051–1056. IEEE Press, Los Alamitos (2002)
Li, X.: A nondominated sorting particle swarm optimizer for multi-objective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)
Parsopoulos, K., Vrahatis, M.: Particle Swarm Optimization Methods in Multiobjective Problems. In: Proceedings of 2002 ACM Symp. Applied Computing (SAC 2002), Madrid, Spain, pp. 603–607 (2002)
Leung, Y.W., Zhang, Q.: Evolutionary algorithms experimental design methods: A hybrid approach for hard optimization and search problems, Res. Grant Proposal, Hong Kong Baptist Univ. (1997)
Leung, Y.-W., Wang, Y.: An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 5(1) (2001)
Yao, X., Liu, Y.: Fast evolutionary programming. In: Proc. Of the Fifth Annual Conference on Evolutionary Programming (EP 1996), pp. 451–460. MIT Press, San Diego (1996)
Li, C., Liu, Y., Zhou, A., et al.: A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 344–352. Springer, Heidelberg (2007)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
Zheng, W.: Research and Application of OMEA in the Optimal Design of Constellation. Master thesis. School of Computer, China University of Geosciences, Wuhan, Hubei, China
Reddy, M.J., Kumar, D.N.: An efficient multi - objective optimization algorithm based on swarm intelligence for engineering design. Engineering Optimization 39(1), 49–68 (2007)
Zhang, Q., Xue, S.: An Improved Multi-Objective Particle Swarm Optimization Algorithm. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 372–381. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, Z., Dai, G., Fang, P., Chen, F., Tan, Y. (2008). An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2008. Lecture Notes in Computer Science, vol 5370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92137-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-92137-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92136-3
Online ISBN: 978-3-540-92137-0
eBook Packages: Computer ScienceComputer Science (R0)