Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem | SpringerLink
Skip to main content

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5323))

Included in the following conference series:

Abstract

Two variable metric reinforcement learning methods, the natural actor-critic algorithm and the covariance matrix adaptation evolution strategy, are compared on a conceptual level and analysed experimentally on the mountain car benchmark task with and without noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heidrich-Meisner, V., Igel, C.: Similarities and differences between policy gradient methods and evolution strategies. In: Verleysen, M. (ed.) 16th European Symposium on Artificial Neural Networks (ESANN), Evere, Belgium, pp. 149–154. d-side publications (2008)

    Google Scholar 

  2. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. In: Proc. 3rd IEEE-RAS Int’l. Conf. on Humanoid Robots, pp. 29–30 (2003)

    Google Scholar 

  3. Riedmiller, M., Peters, J., Schaal, S.: Evaluation of policy gradient methods and variants on the cart-pole benchmark. In: Proc. 2007 IEEE Internatinal Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), pp. 254–261 (2007)

    Google Scholar 

  4. Peters, J., Schaal, S.: Applying the episodic natural actor-critic architecture to motor primitive learning. In: Proc. 15th European Symposium on Artificial Neural Networks (ESANN 2007), Evere, Belgium, pp. 1–6. d-side publications (2007)

    Google Scholar 

  5. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7-9), 1180–1190 (2008)

    Article  Google Scholar 

  6. Hansen, N.: The CMA evolution strategy: A comparing review. In: Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pp. 75–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Beyer, H.G.: Evolution strategies. Scholarpedia 2(18), 1965 (2007)

    Article  Google Scholar 

  8. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  9. Pellecchia, A., Igel, C., Edelbrunner, J., Schöner, G.: Making driver modeling attractive. IEEE Intelligent Systems 20(2), 8–12 (2005)

    Article  Google Scholar 

  10. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 654–662. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Siebel, N.T., Sommer, G.: Evolutionary reinforcement learning of artificial neural networks. International Journal of Hybrid Intelligent Systems 4(3), 171–183 (2007)

    Article  MATH  Google Scholar 

  12. Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary acquisition of neural topologies. In: Verleysen, M. (ed.) 13th European Symposium on Artificial Neural Networks, pp. 259–266. d-side (2005)

    Google Scholar 

  13. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strategies. In: Computational Intelligence: Research Frontiers. IEEE Press, Los Alamitos (accepted, 2008)

    Google Scholar 

  14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. Advances in Neural Information Processing Systems 12, 1057–1063 (2000)

    Google Scholar 

  17. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog (1973)

    Google Scholar 

  18. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons, Chichester (1995)

    MATH  Google Scholar 

  19. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms – A comparative review. Natural Computing 3, 77–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003)

    Article  Google Scholar 

  22. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  23. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation (in press, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heidrich-Meisner, V., Igel, C. (2008). Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem. In: Girgin, S., Loth, M., Munos, R., Preux, P., Ryabko, D. (eds) Recent Advances in Reinforcement Learning. EWRL 2008. Lecture Notes in Computer Science(), vol 5323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89722-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89722-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89721-7

  • Online ISBN: 978-3-540-89722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics