Discrete Contour Extraction from Reference Curvature Function | SpringerLink
Skip to main content

Discrete Contour Extraction from Reference Curvature Function

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

  • 1560 Accesses

Abstract

A robust discrete curvature estimator was recently proposed by Kerautret et al. [1]. In this paper, we exploit the precision and stability of this estimator in order to define a contour extraction method for analysing geometric features. We propose to use a reference curvature function for extracting the frontier of a shape in a gray level image. The frontier extraction is done by using both geometric information represented by the reference curvature and gradient information contained in the source image. The application of this work is done in a medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kerautret, B., Lachaud, J.O.: Robust estimation of curvature along digital contours with global optimization. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 334–345. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc of Int. Conf. ICCV, pp. 694–699 (1995)

    Google Scholar 

  4. Lachaud, J.O., Vialard, A.: Discrete deformable boundaries for image segmentation. Research report 1244-00, LaBRI, Talence, France (2000)

    Google Scholar 

  5. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models their training and application. Computer Vision and Image Undestranding, 38–59 (1995)

    Google Scholar 

  6. Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proc. of ACM SIGGRAPH 1995: pp. 191–198 (1995)

    Google Scholar 

  7. Farber, M., Ehrhardt, J., Handels, H.: Live-wire-based segmentation using similarities between corresponding image structures. Computerized Medical Imaging and Graphics 31, 549–560 (2007)

    Article  Google Scholar 

  8. Gougoutasa, A.J., d.A.W., Borthakur, A., Shapiro, E., Udupa, J.: Cartilage volume quantification via live wire segmentation. Acad. Radiol. 11(12), 1389–1395 (2004)

    Article  Google Scholar 

  9. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. Proc. of ACM SIGGRAPH 23(3), 303–308 (2004)

    Article  Google Scholar 

  10. Kang, H.W., Shin, S.Y.: Enhanced lane: interactive image segmentation by incremental path map construction. Graphical Models 64, 282–303 (2003)

    Article  MATH  Google Scholar 

  11. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. Proc. of ACM SIGGRAPH 23(3), 309–314 (2004)

    Article  Google Scholar 

  12. Schoenemann, T., Cremers, D.: Introducing curvature into globally optimal image segmentation:minimum ratio cycles on product graphs. In: Proc. of Int. Conf. on Comp. Vis., Rio de Janeiro, pp. 1–6 (2007)

    Google Scholar 

  13. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal Blurred Segments Decomposition of Noisy Shapes in Linear Times. Computers and Graphics (2006)

    Google Scholar 

  15. Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lyon 2 (2002)

    Google Scholar 

  16. Nguyen, T., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik, 269–271 (1959)

    Google Scholar 

  18. Savoiardo, M.: Differential diagnosis of parkinson’s disease and atypical parkinsonian disorders by mangnetic resonance imaging. Neurol. Sci. 24, 35–37 (2003)

    Article  Google Scholar 

  19. Schrag, A., Good, C., Miszriel, K., Morris, H., Mathias, C., Lees, A., Quinn, N.: Differentiation of atypical parkinsonian syndromes with routine mri. Neurology 54(3), 697–707 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, H.G., Kerautret, B., Desbarats, P., Lachaud, J.O. (2008). Discrete Contour Extraction from Reference Curvature Function. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics