Abstract
We discuss Bregman divergences and the very close relationship between a class of these divergences and the regular family of exponential distributions before applying them to various topology preserving dimension reducing algorithms. We apply these methods to identification of structure in magnetic resonance images of the brain and show that different divergences reveal different structure in these images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azoury, K.S., Warmouth, M.K.: Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning (43), 211–246 (2001)
Banerjee, A., Meruga, S., Dhillon, I., Ghosh, J.: Clustering with bregman divergences. Journal of Machine Learning Research 6, 1705–1749 (2005)
Collins, M., Dasgupta, S., Shapire, R.E.: A generalization of principal component analysis to the exponential family. In: Nips14 (2002)
Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)
Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Heidelberg (2007)
Neilsen, F., Boissonnat, J.-D., Nock, R.: Bregman voronoi diagrams: Properties, algorithms and applications (submitted, 2007)
Neilsen, F., Boissonnat, J.-D., Nock, R.: On bregman voronoi diagrams. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 746–755 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jang, E., Fyfe, C., Ko, H. (2008). Bregman Divergences and the Self Organising Map. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-88906-9_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88905-2
Online ISBN: 978-3-540-88906-9
eBook Packages: Computer ScienceComputer Science (R0)