Nonnegative Matrix Factorization (NMF) Based Supervised Feature Selection and Adaptation | SpringerLink
Skip to main content

Nonnegative Matrix Factorization (NMF) Based Supervised Feature Selection and Adaptation

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2008 (IDEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5326))

Abstract

We proposed a novel algorithm of supervised feature selection and adaptation for enhancing the classification accuracy of unsupervised Nonnegative Matrix Factorization (NMF) feature extraction algorithm. At first the algorithm extracts feature vectors for a given high dimensional data then reduce the feature dimension using mutual information based relevant feature selection and finally adapt the selected NMF features using the proposed Non-negative Supervised Feature Adaptation (NSFA) learning algorithm. The supervised feature selection and adaptation improve the classification performance which is fully confirmed by simulations with text-document classification problem. Moreover, the non-negativity constraint, of this algorithm, provides biologically plausible and meaningful feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Makrehchi, M.M., Kamel, M.S.: Text classification using small number of features. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 580–589. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proc. of 14th ICML, pp. 412–420 (1997)

    Google Scholar 

  3. Slonim, N., Tishby, N.: The power of word clusters for text classification. In: Proc. ECIR (2001)

    Google Scholar 

  4. Lee, D.D., Seung, H.S.: Learning of the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  MATH  Google Scholar 

  5. Cichocki, A., Zdunek, R.: Multilayer Nonnegative Matrix Factorization. Electronics Letters 42, 947–948 (2006)

    Article  Google Scholar 

  6. Hoyer, P.O.: Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Shahnaz, F., Berry, M.W., Paul, P., Plemmons, R.J.: Document clustering using nonnegative matrix factorization. Information Processing and Management 42, 373–386 (2006)

    Article  MATH  Google Scholar 

  8. Smaragdis, P., Brown, J.C.: Non-Negative Matrix Factorization for Polyphonic Music Transcription. In: Proc. WASPAA 2003, IEEE Press, Los Alamitos (2003)

    Google Scholar 

  9. Haykin, S.: Neural Networks a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  10. Barman, P.C., Lee, S.Y.: Document Classification with Unsupervised Nonnegative Matrix Factorization and Supervised Perceptron Learning. In: Proc. ICIA 2007, pp. 182–186. IEEE Press, Korea (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barman, P.C., Lee, SY. (2008). Nonnegative Matrix Factorization (NMF) Based Supervised Feature Selection and Adaptation. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88906-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88905-2

  • Online ISBN: 978-3-540-88906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics