Parametric Algorithms for Cyclic Scheduling Problems with Applications to Robotics | SpringerLink
Skip to main content

Parametric Algorithms for Cyclic Scheduling Problems with Applications to Robotics

  • Conference paper
MICAI 2008: Advances in Artificial Intelligence (MICAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5317))

Included in the following conference series:

Abstract

The paper considers cyclic scheduling problems arising in planning of robotic flowlines and logistics. The problems are reduced to finding the minimum (or maximum) cost-to-time ratio in doubly weighted graphs. New combinatorial algorithms are developed extending the cyclic project scheduling algorithm by Romanovskii (1967) and the minimum-cost-to-time-ratio algorithm by Dantzig, Blattner and Rao (1967). Whereas Romanovskii’s and Dantzig-Blattner-Rao’s algorithms are restricted to solving problems with fixed numerical data, the new algorithms can treat input data that are varied at prescribed intervals. Several special cases are solved in strongly polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brauner, N., Finke, G.: Optimal moves of the material handling system in a robotic cell. Int. J. Production Economics 74, 269–277 (2001)

    Article  Google Scholar 

  2. Che, A., Chu, C., Levner, E.: A polynomial algorithm for 2-degree cyclic robot scheduling. European Journal of Operational Research 145(1), 31–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, C.: A faster polynomial algorithm for 2-cyclic robotic scheduling. Journal of Scheduling 9(5), 453–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, E., Megiddo, N.: Improved algorithms for linear inequalities with two variables per inequality. SIAM Journal on Computing 23, 1313–1350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crama, Y., Kats, V., van de Klundert, J., Levner, E.: Cyclic scheduling in robotic flow-shop. Annals of operations Research 96(1-4), 97–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dantzig, G.B., Blattner, W., Rao, M.R.: Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In: Rosenstiehl, P. (ed.) Theory of Graphs, Dunod, Paris, Gordon, Breach, New York, pp. 77–84 (1967)

    Google Scholar 

  7. Dawande, M.N., Geismer, H.N., Sethi, S.P., Sriskandarajah, C.: Througput Optimization in Robotic Cells. Springer, Heidelberg (2007)

    Google Scholar 

  8. Dyer, M.E.: Linear time algorithms for two- and three-variable linear programming. SIAM Journal on Computing 13(1), 31–45 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hanen, C., Munier, A.: Cyclic scheduling on parallel processors: An overview. In: Chretienne, P., Coffman Jr., E.G., Lenstra, J.K., Liu, Z. (eds.) Scheduling Theory and Its Applications, pp. 194–226. Wiley, Chichester (1995)

    Google Scholar 

  10. Kampmeyer, T.: Cyclic Scheduling Problems. PhD thesis, University of Osnabrück, Germany (2006)

    Google Scholar 

  11. Kats, V., Lei, L., Levner, E.: Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence and time-window constraints. European Journal of Operational Research 187(3), 1196–1211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kats, V., Levner, E.: Cyclic scheduling on a robotic production line. Journal of Scheduling 5, 23–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kats, V., Levner, E.: A polynomial algorithm for 2-cyclic robotic scheduling: A non-Euclidean case. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 439–449. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kats, V., Levner, E., Meyzin, L.: Multiple-part cyclic hoist scheduling using a sieve method. IEEE Transactions on Robotics and Automation 15(4), 704–713 (1999)

    Article  Google Scholar 

  15. Khachiyan, L.G.: A polynomial algorithm in linear programming. Sov. Math. Dokl. 20, 191–199 (1979)

    MATH  Google Scholar 

  16. Lee, T.E., Posner, M.E.: Performance measures and schedules in periodic job shops. Operations Research 45(1), 72–91 (1997)

    Article  MATH  Google Scholar 

  17. Lei, L.: Determining the optimal starting times in a cyclic schedule with a given route. Computers and Operations Research 20, 807–816 (1993)

    Article  MATH  Google Scholar 

  18. Levner, E., Kats, V.: A parametrical critical path problem and an application for cyclic scheduling. Discrete Applied Mathematics 87, 149–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levner, E., Kats, V., Sriskandarajah, C.: A geometric algorithm for finding two-unit cyclic schedules in no-wait robotic flowshop. In: Levner, E. (ed.) Proceedings of the Workshop on Intelligent Scheduling of Robots and FMS, Holon, Israel, pp. 101–112. HAIT Press (1996)

    Google Scholar 

  20. Megiddo, N.: Linear time algorithms for linear programming in R3 and related problems. SIAM Journal on Computing 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Romanovskii, I.V.: Optimization of stationary control of a discrete deterministic process. Kybernetika (Cybernetics) 3(2), 66–78 (1967)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kats, V., Levner, E. (2008). Parametric Algorithms for Cyclic Scheduling Problems with Applications to Robotics. In: Gelbukh, A., Morales, E.F. (eds) MICAI 2008: Advances in Artificial Intelligence. MICAI 2008. Lecture Notes in Computer Science(), vol 5317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88636-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88635-8

  • Online ISBN: 978-3-540-88636-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics