Abstract
Mathematical morphology is a well-known theory to process binary, grayscale or color images. In this paper, we introduce interval-valued fuzzy mathematical morphology as an extension of classical and fuzzy morphology. It originates from the observation that the pixel values of a grayscale image are not always certain, and models this uncertainty using interval-valued fuzzy set theory. In this way, we are able to incorporate the uncertainty regarding measured pixel values into the toolbox of morphological operators. We focus our attention on a morphological model whose underlying logical framework is based on the Lukasiewicz-operators. For this model we investigate and discuss general theoretical properties, some computational aspects, as well as its relation to fuzzy morphology and classical grayscale morphology.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barrenechea, E.: Image Processing with interval-valued Fuzzy Sets - Edge Detection - Contrast, Ph.D. thesis, Public University of Navarra (2005)
Bloch, I.: Mathematical Morphology on Bipolar Fuzzy Sets. In: Proceedings of ISMM 2008, pp. 3–4 (2007)
Brito, A.E., Kosheleva, O.: Interval + Image = Wavelet: For Image Processing under Interval Uncertainty, Wavelets are Optimal. Reliable Computing 4(3), 291–301 (1998)
Cabrera, S.D., Iyer, K., Xiang, G., Kreinovich, V.: On Inverse Halftoning: Computational Complexity and Interval Computations. In: Proceedings of CISS 2005, paper 164 (2005)
Castillo, O., Melin, P.: Intelligent Systems with Interval Type-2 Fuzzy Logic. Int. Journal of Innovative Computing, Information and Control 4(4), 771–783 (2008)
Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in Intuitionistic and Interval-valued Fuzzy Set Theory: Construction, Classification, Application. Int. Journal of Approximate Reasoning 35, 55–95 (2004)
De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Kluwer Acad. Publ., Boston (1997)
Deschrijver, G., Kerre, E.E.: On the Relationship Between some Extensions of Fuzzy Set Theory. Fuzzy Sets and Systems 133, 227–235 (2003)
Deschrijver, G., Cornelis, C.: Representability in Interval-valued Fuzzy Set Theory. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(3), 345–361 (2007)
Goguen, J.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)
Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht (1998)
Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)
Heijmans, H.: Morphological Image Operators. Academic Press, New York (1994)
Li, J., Li, Y.: Multivariate mathematical morphology based on principal component analysis: initial results in building extraction. Int. Archives for Photogrammetry, Remote Sensing and Spatial Information Sciences 35(B7), 1168–1173 (2004)
Louverdis, G., Andreadis, I., Tsalides, P.: New fuzzy model for morphological color image processing. In: Proceedings of IEEE Vision, Image and Signal Processing, 2002, pp. 129–139 (2002)
Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets and Systems 124(1), 73–86 (2001)
Nachtegael, M., Heijmans, H., Van der Weken, D., Kerre, E.E.: Fuzzy Adjunctions in Mathematical Morphology. In: Proceedings of JCIS 2003, pp. 202–205 (2003)
Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.E.: Some Aspects of Interval-valued and Intuitionistic Fuzzy Mathematical Morphology. In: IPCV 2008 (accepted, 2008)
Ouyang, S., Ren, Z.: Application of Improved Mathematical Morphology Method in the Power Quality Monitoring. In: Proceedings of PowerCon 2006, pp. 1–6 (2006)
Serra, J.: Image analysis and mathematical morphology. Acad. Press, London (1982)
Smets, P., Magrez, P.: Implication in fuzzy logic. International Journal of Approximate Reasoning 1, 327–347 (1987)
Sussner, P., Valle, M.E.: Classification of Fuzzy Mathematical Morphologies Based on Concepts of Inclusion Measure and Duality. Journal of Mathematical Imaging and Vision (accepted, 2008)
Zadeh, L.: Fuzzy Sets. Information Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.E. (2008). An Interval-Valued Fuzzy Morphological Model Based on Lukasiewicz-Operators. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-88458-3_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88457-6
Online ISBN: 978-3-540-88458-3
eBook Packages: Computer ScienceComputer Science (R0)