Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains for Large-Scale Higher Order Finite Element Simulations | SpringerLink
Skip to main content

Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains for Large-Scale Higher Order Finite Element Simulations

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Summary

When applying higher order finite elements to curved 3D domains in large-scale accelerator simulations, complexities that arise include needing valid curved finite elements and the capability to track the movement of mesh refinement in the critical domains. This paper presents a procedure which combines Bézier mesh curving and size driven mesh adaptation technologies to address those requirements. The intelligent selection of local mesh modifications to eliminate invalid curved elements and properly control the size distribution are the two key technical components. The procedure has been successfully applied by SLAC to generate 3D moving curved meshes in the large-scale electromagnetic modeling of next generation accelerator designs. The results demonstrated that valid curvilinear meshes not only make the time domain simulations more reliable but also improve the computational efficiency up to 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 23520
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 29400
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babuska, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method. Int. J. Numer. Meth. Engng. 18(3), 515–545 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Luo, X.J., Shephard, M.S., Remacle, J.F., O’Bara, R.M., Beall, M.W., Szabo, B.A., Actis, R.: p-version mesh generation issues. In: Proc.of 11th Meshing Roundtable, pp. 343–354 (2002)

    Google Scholar 

  3. CUBIT geometry and mesh generation toolkit, http://cubit.sandia.gov

  4. Simmetrix Inc. Enabling simulation-based design, http://www.simmetrix.com

  5. Akcelik, V., Ko, K., Lee, L.Q., Li, Z.H., Ng, C.K., Xiao, L.L.: Shape determination for deformed electromagnetic cavities. J. Comput. Physics 227(3), 1722–1738 (2008)

    Article  MATH  Google Scholar 

  6. Xiao, L., Adolphsen, C., Akcelik, V., Kabel, A., Ko, K., Lee, L.Q., Li, Z., Ng, C.K.: Modeling imperfection effects on dipole modes in TESLA cavity. In: Proc. of 2007 Particle Accelerator Conference (2007)

    Google Scholar 

  7. Lee, L.Q., Akcelik, V., Chen, S., Gl, X., Prudencio, E., Schussman, G., Uplenchwar, R., Ng, C., Ko, K., Luo, X.J., Shephard, M.S.: Enabling technologies for petascale electromagnetic accelerator simulation. J. of Physics 78(Conference Series), 012040 (2007)

    Google Scholar 

  8. Luo, X.J., Shephard, M.S., Obara, R.M., Nastasia, R., Beall, M.W.: Automatic p-version mesh generation for curved domains. Engineering with Computers 20, 265–285 (2004)

    Article  Google Scholar 

  9. Luo, X.J.: An Automatic Adaptive Directional Variable p-Version Method in 3D Curved Domains. PhD Thesis, Rensselaer Polytechnic Institute, New York (2005)

    Google Scholar 

  10. Li, X.R., Shephard, M.S., Beall, M.W.: Accounting for curved domains in mesh adaptation. Int. J. Numer. Meth. Engng. 150, 247–276 (2003)

    Article  Google Scholar 

  11. Li, X.R., Shephard, M.S., Beall, M.W.: 3D anisotropic mesh adaptation by mesh modification. Comp. Meth. Appl. Mech. Engng. 194, 4915–4950 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Seegyoung, E., Shephard, M.S.: Efficient distributed mesh data structure for parallel automated adaptive analysis. Engineering with Computers 22, 197–213 (2006)

    Article  Google Scholar 

  13. Beall, M.W., Shephard, M.S.: A general topology-based mesh data structure. Int. J. Numer. Meth. Engng. 40(9), 1573–1596 (1997)

    Article  MathSciNet  Google Scholar 

  14. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, London (1992)

    Google Scholar 

  15. Sahni, O., Muller, J., Jansen, K.E., Shephard, M.S., Taylor, C.: Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Engrg. 195(41-43), 5634–5655 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wan, J.: An Automated Adaptive Procedure for 3D Metal Forming Simulations. PhD Thesis, Rensselaer Polytechnic Institute, New York (2006)

    Google Scholar 

  17. Chevaugeon, N., Hillewaert, K., Gallez, X., Ploumhans, P., Remacle, J.F.: Optimal numerical parameterization of discontinuous Galerkin method applied to wave propagation problems. J. Comput. Physics 223(1), 188–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Int. J. Numer. Meth. Engng. 43(6), 1143–1165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sun, D.K., Lee, J.F., Cendes, Z.: Construction of nearly orthogonal Nedelec bases for rapid convergence with multilevel preconditioned solvers. SIAM J. on Sci Comput. 23(4), 1053–1076 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, X., Shephard, M.S., Lee, LQ., Ng, C., Ge, L. (2008). Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains for Large-Scale Higher Order Finite Element Simulations. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics