Accurate Interpolation of Terrain Surfaces from Over-Sampled Grid Data | SpringerLink
Skip to main content

Accurate Interpolation of Terrain Surfaces from Over-Sampled Grid Data

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Summary

For grid terrain data, we propose a Lepp-surface triangulation method that starts with a coarse initial triangulation of the input data, and incrementally adds data points that reduce the worst edge approximation error in the mesh. The method generalizes a previous Lepp-centroid method in two dimensions as follows: for the edge E, having highest error in the mesh, one or two points close to (one or two) terminal edges associated to E, are inserted in the mesh. The edge error is computed by adding the triangle approximation errors of the two triangles that share E, while each triangle error in L 2-norm is computed by using a curvature tensor (good approximation of the surface) at a representative point associated to both triangles. The method produces triangular approximations that capture well the relevant features of the terrain surface by naturally producing well-shaped triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 23520
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 29400
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the hausdorff distance. In: Proc. of the IEEE International Conference in Multimedia and Expo., pp. 705–708 (2002)

    Google Scholar 

  2. Bertram, M., Barnes, J.C., Hamann, B., Joy, K.I., Pottmann, H., Wushour, D.: Piecewise optimal triangulation for the approximation of scattered data in the plane. Computer Aided Geometric Design 17(8), 767–787 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3d mesh processing system. ERCIM News (73), 45–46 (2008)

    Google Scholar 

  4. DeFloriani, L., Magillo, P., Puppo, E.: Variant: A system for terrain modeling at variable resolution. GeoInformatica 4(3), 287–315 (2000)

    Article  Google Scholar 

  5. Dyn, N., Levin, D., Rippa, S.: Data dependent triangulations for piecewise linear interpolation. IMA Journal of Numerical Analysis 10, 137–154 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frey, P.J., Borouchaki, H.: Geometric surface mesh optimization. Computing and Visualization in Science 1(3), 121–133 (1998)

    Article  Google Scholar 

  7. Garland, M.: Multiresolution modeling: Survey & future opportunities. Eurographics State of The Art Report (1999)

    Google Scholar 

  8. Garland, M.: Quadric-based polygonal surface simplification, Ph.D. thesis, Carnegie Mellon University (1999)

    Google Scholar 

  9. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209–216 (1997)

    Google Scholar 

  10. Garland, M., Heckbert, P.-S.: Fast polygonal approximation of terrains and height fields, Tech. Report CMU-CS-95-181 (1995)

    Google Scholar 

  11. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. Computer Graphics 27, 19–26 (1993)

    Google Scholar 

  12. Kalogerakis, E., Simari, P., Nowrouzezahrai, D., Singh, K.: Robust statistical estimation of curvature on discretized surfaces. In: SGP 2007: Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association, pp. 13–22 (2007)

    Google Scholar 

  13. Lawson, C.-L.: Software for \(\mathcal{C} ^{1}\) surface interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194 (1977)

    Google Scholar 

  14. Lindstrom, P., Pascucci, V.: Visualization of large terrains made easy. In: Proceedings of IEEE Visualization 2001, pp. 363–370, 574 (2001)

    Google Scholar 

  15. Lindstrom, P., Pascucci, V.: Terrain simplification simplified: a general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics 8(3), 239–254 (2002)

    Article  Google Scholar 

  16. Nadler, E.: Piecewise linear best \(\textit{L}_{2}\) approximation on triangulations. In: Chui, C.K., et al. (eds.) Approximation Theory V, pp. 499–502 (1986)

    Google Scholar 

  17. Pajarola, R., Gobbetti, E.: Survey on semi-regular multiresolution models for interactive terrain rendering. The Visual Computer 23(8), 585–605 (2007)

    Article  Google Scholar 

  18. Rippa, S.: Long and thin triangles can be good for linear interpolation. SIAM Journal on Numerical Analysis 29(1), 257–270 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rivara, M.-C.: New longest-edge algorithms for the refinement and/or improvement of unstructured triangulation. International Journal for Numerical Methods in Engineering 40, 3313–3324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rivara, M.-C., Calderon, C.: Lepp terminal centroid method for quality triangulation: A study on a new algorithm. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 215–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Rivara, M.-C., Hitschfeld, N., Simpson, R.-B.: Terminal edges delaunay (small angle based) algorithm for the quality triangulation problem. Computer-Aided Design 33, 263–277 (2001)

    Article  Google Scholar 

  22. Rivara, M.-C., Palma, M.: New lepp algorithms for quality polygon and volume triangulation: Implementation issues and practical behavior.  220, 543–562 (1997)

    Google Scholar 

  23. Röttger, S., Heidrich, W., Slussallek, P., Seidel, H.-P.: Real-time generation of continuous levels of detail for height fields. In: Proceedings of 1998 International Conference in Central Europe on Computer Graphics and Viaualization, pp. 315–322 (1998)

    Google Scholar 

  24. Shewchuk, J.-R.: What is a good linear element? interpolation, conditioning, and quality measures. In: Proceedings of the 11th International Meshing Roundtable (2002)

    Google Scholar 

  25. Vollmer, J., Mencl, R., Môller, H.: Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum (Eurographics 1999) 18(3), 131–138 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coll, N., Guerrieri, M., Rivara, MC., Sellarès, J.A. (2008). Accurate Interpolation of Terrain Surfaces from Over-Sampled Grid Data. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics