Recovering Consistency by Forgetting Inconsistency | SpringerLink
Skip to main content

Recovering Consistency by Forgetting Inconsistency

  • Conference paper
Logics in Artificial Intelligence (JELIA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5293))

Included in the following conference series:

Abstract

In this paper, we introduce and study a new paraconsistent inference relation ⊧  c in the setting of 3-valued paraconsistent logics. Using inconsistency forgetting as a key mechanism for recovering consistency, it guarantees that the deductive closure \(Cn_{\models_c}(\Sigma)\) of any belief base Σ is classically consistent and classically closed. This strong feature, not shared by previous inference relations in the same setting, allows to interpret an inconsistent belief base as a set of classical worlds (hence to reason classically from them).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besnard, P., Hunter, A.: Introduction to actual and potential contradictions. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, pp. 1–11. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  2. Hunter, A.: Paraconsistent logics. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, pp. 11–36. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  3. Priest, G.: Paraconsistent Logic. In: Handbook of Philosophical Logic, vol. 6, pp. 287–393. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  4. Grant, J., Subrahmanian, V.: Reasoning in inconsistent knowledge bases. IEEE Trans. on Knowledge and Data Engineering 7(1), 177–189 (1995)

    Article  MathSciNet  Google Scholar 

  5. Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83(2), 363–378 (1996)

    Article  MathSciNet  Google Scholar 

  6. Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and Computation 7(2), 133–160 (1997)

    Article  MathSciNet  Google Scholar 

  7. Konieczny, S., Pino Pérez, R.: On the logic of merging. In: Proc. of KR 1998, Trento, Italy, pp. 488–498 (1998)

    Google Scholar 

  8. Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Proc. of KR 2000, Breckenridge, CO, pp. 135–144 (2000)

    Google Scholar 

  9. Konieczny, S., Lang, J., Marquis, P.: Reasoning under inconsistency: The forgotten connective. In: Proc. of IJCAI 2005, Edinburgh, UK, pp. 484–489 (2005)

    Google Scholar 

  10. D’Ottaviano, I., da Costa, N.: Sur un problème de Jaśkowski. Comptes Rendus de l’Académie des Sciences de Paris 270, 1349–1353 (1970)

    MATH  Google Scholar 

  11. Belnap, N.: A useful four–valued logics. In: Modern Uses of Multiple-Valued Logic, pp. 8–37. Reidel (1977)

    Google Scholar 

  12. Frisch, A.: Inference without chaining. In: Proc. of IJCAI 1987, Milan, Italy, pp. 515–519 (1987)

    Google Scholar 

  13. Levesque, H.: A knowledge-level account of abduction (preliminary version). In: Proc. of IJCAI 1989, Detroit, MI, pp. 1061–1067 (1989)

    Google Scholar 

  14. Priest, G.: Reasoning about truth. Artificial Intelligence 39, 231–244 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Priest, G.: Minimally inconsistent LP. Studia Logica 50, 321–331 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Besnard, P., Schaub, T.: Circumscribing inconsistency. In: Proc. of IJCAI 1997, Nagoya, Japan, pp. 150–155 (1997)

    Google Scholar 

  17. Besnard, P., Schaub, T.: Signed systems for paraconsistent reasoning. J. of Automated Reasoning 20, 191–213 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Arieli, O., Avron, A.: The value of four values. Artificial Intelligence 102, 97–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Arieli, O., Avron, A.: A model-theoretic approach for recovering consistent data from inconsistent knowledge bases. J. of Automated Reasoning 22(2), 263–309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Konieczny, S., Marquis, P.: Three-valued logics for inconsistency handling. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 332–344. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Marquis, P., Porquet, N.: Resource-bounded paraconsistent inference. Ann. of Mathematics and Artificial Intelligence 39, 349–384 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Coste-Marquis, S., Marquis, P.: On the complexity of paraconsistent inference relations. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 151–190. Springer, Heidelberg (2005)

    Google Scholar 

  23. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Coste-Marquis, S., Marquis, P.: Recovering consistency by forgetting inconsistency. Technical report, CRIL UMR 8188 (2008)

    Google Scholar 

  25. Gabbay, D.M.: Theoretical foundations for nonmonotonic reasoning in experts systems. In: Apt, K. (ed.) Logic and Models of Concurrent Systems. Springer, Heidelberg (1985)

    Google Scholar 

  26. Makinson, D.: General Pattern in nonmonotonic reasoning. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. III, pp. 35–110. Clarendon Press, Oxford (1994)

    Google Scholar 

  27. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coste-Marquis, S., Marquis, P. (2008). Recovering Consistency by Forgetting Inconsistency. In: Hölldobler, S., Lutz, C., Wansing, H. (eds) Logics in Artificial Intelligence. JELIA 2008. Lecture Notes in Computer Science(), vol 5293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87803-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87803-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87802-5

  • Online ISBN: 978-3-540-87803-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics