Broadcasting in UDG Radio Networks with Missing and Inaccurate Information | SpringerLink
Skip to main content

Broadcasting in UDG Radio Networks with Missing and Inaccurate Information

  • Conference paper
Distributed Computing (DISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5218))

Included in the following conference series:

  • 884 Accesses

Abstract

We study broadcasting time in radio networks, modeled as unit disk graphs (UDG). Emek et al. showed that broadcasting time depends on two parameters of the UDG network, namely, its diameter D (in hops) and its granularity g. The latter is the inverse of the density d of the network which is the minimum Euclidean distance between any two stations. They proved that the minimum broadcasting time is \( \Theta \left( \min\left\{ D + g^2, D \log{g} \right\} \right) \), assuming that each node knows the density of the network and knows exactly its own position in the plane.

In many situations these assumptions are unrealistic. Does removing them influence broadcasting time? The aim of this paper is to answer this question, hence we assume that density is unknown and nodes perceive their position with some unknown error margin ε. It turns out that this combination of missing and inaccurate information substantially changes the problem: the main new challenge becomes fast broadcasting in sparse networks (with constant density), when optimal time is O(D). Nevertheless, under our very weak scenario, we construct a broadcasting algorithm that maintains optimal time \( O \left( \min\left\{ D + g^2, D \log{g} \right\}\right)\) for all networks with at least 2 nodes, of diameter D and granularity g, if each node perceives its position with error margin ε = αd, for any (unknown) constant α< 1/2. Rather surprisingly, the minimum time of an algorithm stopping if the source is alone, turns out to be Θ(D + g 2). Thus, the mere stopping requirement for the special case of the lonely source causes an exponential increase in broadcasting time, for networks of any density and any small diameter. Finally, broadcasting is impossible if ε ≥ d/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. In: PODC, pp. 195–204 (2007)

    Google Scholar 

  2. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in ad hoc radio networks. Dist. Computing 15(1), 27–38 (2002)

    Article  Google Scholar 

  3. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Trans. on Communications 33, 1240–1246 (1985)

    Article  MATH  Google Scholar 

  4. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in multihop radio networks. IEEE Trans. on Communications 39, 426–433 (1991)

    Article  Google Scholar 

  5. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. J. Algorithms 46(1), 1–20 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Elkin, M., Kortsarz, G.: Improved schedule for radio broadcast. In: SODA, pp. 222–231 (2005)

    Google Scholar 

  7. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. In: PODC, pp. 129–137 (2005)

    Google Scholar 

  8. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Dist. Computing 19(3), 185–195 (2007)

    Article  Google Scholar 

  9. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput. Syst. Sci. 43(2), 290–298 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bruschi, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio networks. Distrib. Comput. 10(3), 129–135 (1997)

    Article  Google Scholar 

  12. Chlebus, B.S., Gasieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting. In: ICALP, pp. 717–728 (2000)

    Google Scholar 

  13. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. In: FOCS, pp. 575–581 (2000)

    Google Scholar 

  14. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

    Google Scholar 

  15. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: FOCS, pp. 492–501 (2003)

    Google Scholar 

  16. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness vs. obliviousness and randomization vs. determinism. Theor. Comput. Sci. 333(3), 355–371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marco, G.D.: Distributed broadcast in unknown radio networks. In: SODA, pp. 208–217 (2008)

    Google Scholar 

  18. Kushilevitz, E., Mansour, Y.: An omega( log (/d)) lower bound for broadcast in radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. Discrete Algorithms 5(1), 187–201 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of information on broadcasting time in linear radio networks. Theor. Comput. Sci. 287(2), 449–471 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In: INFOCOM, pp. 1116–1124 (1996)

    Google Scholar 

  22. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: PODC, pp. 148–157 (2005)

    Google Scholar 

  23. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: SPAA, pp. 39–48 (2005)

    Google Scholar 

  24. Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gadi Taubenfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fusco, E.G., Pelc, A. (2008). Broadcasting in UDG Radio Networks with Missing and Inaccurate Information. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87779-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87778-3

  • Online ISBN: 978-3-540-87779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics