Abstract
This paper presents two manifold training techniques to reconstruct high dynamic range images from a set of low dynamic range images which have different exposure times. It provides the performance on noisy images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mann, S., Picard, R.: On Being ‘undigital’ with Digital Cameras: Extending Dynamic Range by Combining Differently Exposed Pictures. In: IS&T’s 46th Annual Conference, pp. 422–428 (1995)
Debevec, P.E., Malik, J.: Recovering High Dynamic Range Radiance Maps from Photographs. In: 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. ACM Press, New York (1997)
Mitsunaga, T., Nayar, S.K.: Radiometric Self Calibration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 374–380 (1999)
Liou, C.-Y., Chen, H.-T., Huang, J.-C.: Separation of Internal Representations of the Hidden Layer. In: International Computer Symposium, Workshop on Artificial Intelligence, pp. 26–34 (2000)
Liou, C.-Y., Cheng, W.-C.: Manifold Construction by Local Neighborhood Preservation. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2008, Part II. LNCS, vol. 4985, pp. 683–692. Springer, Heidelberg (2008)
Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)
Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic Tone Reproduction for Digital Images. In: 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 267–276 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liou, CY., Cheng, WC. (2008). Manifold Training Technique to Reconstruct High Dynamic Range Image. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87734-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-540-87734-9_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87733-2
Online ISBN: 978-3-540-87734-9
eBook Packages: Computer ScienceComputer Science (R0)