Manifold Training Technique to Reconstruct High Dynamic Range Image | SpringerLink
Skip to main content

Manifold Training Technique to Reconstruct High Dynamic Range Image

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5264))

Included in the following conference series:

Abstract

This paper presents two manifold training techniques to reconstruct high dynamic range images from a set of low dynamic range images which have different exposure times. It provides the performance on noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mann, S., Picard, R.: On Being ‘undigital’ with Digital Cameras: Extending Dynamic Range by Combining Differently Exposed Pictures. In: IS&T’s 46th Annual Conference, pp. 422–428 (1995)

    Google Scholar 

  2. Debevec, P.E., Malik, J.: Recovering High Dynamic Range Radiance Maps from Photographs. In: 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. ACM Press, New York (1997)

    Chapter  Google Scholar 

  3. Mitsunaga, T., Nayar, S.K.: Radiometric Self Calibration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 374–380 (1999)

    Google Scholar 

  4. Liou, C.-Y., Chen, H.-T., Huang, J.-C.: Separation of Internal Representations of the Hidden Layer. In: International Computer Symposium, Workshop on Artificial Intelligence, pp. 26–34 (2000)

    Google Scholar 

  5. Liou, C.-Y., Cheng, W.-C.: Manifold Construction by Local Neighborhood Preservation. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2008, Part II. LNCS, vol. 4985, pp. 683–692. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic Tone Reproduction for Digital Images. In: 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 267–276 (2002)

    Google Scholar 

  8. http://www1.cs.columbia.edu/CAVE/software/rascal/rrhome.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liou, CY., Cheng, WC. (2008). Manifold Training Technique to Reconstruct High Dynamic Range Image. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87734-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87734-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87733-2

  • Online ISBN: 978-3-540-87734-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics