Memetic Algorithm-Based Image Watermarking Scheme | SpringerLink
Skip to main content

Memetic Algorithm-Based Image Watermarking Scheme

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3090 Accesses

Abstract

Watermarking technology is the most efficient way to protect the ownership of multimedia data. In this paper, a novel image watermarking scheme using the Discrete Wavelet Transform (DWT) and memetic algorithm (MA) is introduced. The watermark is embedded to subband coefficients of subimage which is extracted from the original image by using DWT, and watermark extraction is efficiently performed via memetic algorithm. Experimental results show that the proposed watermarking scheme makes an almost invisible difference between the watermarked image and the original image, and is robust to common image processing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartung, F., Kutter, M.: Multimedia Watermarking Techniques. Proceedings of IEEE 87, 1079–1107 (1999)

    Article  Google Scholar 

  2. Paqueta, A.H., Wardb, R.K., Pitas, I.: Wavelet Packets-Based Digital Watermarking for Image Verification and Authentication. Signal Processing 83, 2117–2132 (2003)

    Article  Google Scholar 

  3. Jayant, N.J., Johnston, J., Safranek, R.: Signal Compression Based on Models of the Human Perception. Proceedings of IEEE 81, 1385–1422 (1993)

    Article  Google Scholar 

  4. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Technical Report, Caltech Concurrent Computation Program (1989)

    Google Scholar 

  5. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  6. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among Five Evolutionary-Based Optimization Algorithms. Advanced Engineering Informatics 19, 43–53 (2005)

    Article  Google Scholar 

  7. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal Functions and Wavelet Expansions Based on Several Scaling Functions. Journal of Approximation Theory 78, 373–401 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Attakitmongcol, K., Hardin, D.P., Wilkes, D.M.: Multiwavelet Prefilters II: Optimal Orthogonal Prefilters. IEEE Transactions on Image Processing 10, 1476–1487 (2001)

    Article  MATH  Google Scholar 

  9. Barni, M., Bartolini, F.: Improved Wavelet-Based Watermarking through Pixel-Wise Masking. IEEE Transactions on Image Processing 10, 783–791 (2001)

    Article  MATH  Google Scholar 

  10. Clark, R.: An Introduction to JPEG 2000 and Watermarking. In: 2000 IEE Seminar on Secure Images and Image Authentication, pp. 3–6. IEEE Press, New York (2000)

    Chapter  Google Scholar 

  11. Hsieh, S.-L., Huang, B.-Y.: A Copyright Protection Scheme for Gray-Level Images Based on Image Secret Sharing and Wavelet Transformation. In: 2004 International Symposium on Computer, pp. 661–666. IEEE Press, New York (2004)

    Google Scholar 

  12. Chang, C.-C., Chung, J.-C.: An Image Intellectual Property Protection Scheme for Gray-Level Images Using Visual Secret Sharing Strategy. Pattern Recognition Letters 23, 931–941 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Wang, Z., Zhang, D. (2008). Memetic Algorithm-Based Image Watermarking Scheme. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics