Abstract
The majority of existing Independent Component Analysis (ICA) algorithms are based on maximizing or minimizing a certain objective function with the help of gradient learning methods. However, it is rather difficult to prove whether there is no spurious solution in ICA under any objective function as well as the gradient learning algorithm to optimize it. In this paper, we present an analysis on the kurtosis-sum objective function, i.e., the sum of the absolute kurtosis values of all the estimated components, with a kurtosis switching algorithm to maximize it. In two-source case, it is proved that any local maximum of this kurtosis-sum objective function corresponds to a feasible solution of the ICA problem in the asymptotic sense. The simulation results further show that the kurtosis switching algorithm always leads to a feasible solution of the ICA problem for various types of sources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, P.: Independent Component Analysis – a New Concept? Signal Processing 36, 287–314 (1994)
Cardoso, J.F.: Infomax and Maximum Likelihood for Blind Source Separation. IEEE Signal Processing Letters 4, 112–114 (1997)
Bell, A., Sejnowski, T.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)
Amari, S.I., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Separation of Sources. Advances in Neural Information Processing 8, 757–763 (1996)
Xu, L., Cheung, C.C., Amari, S.I.: Learned Parametric Mixture Based ICA Algorithm. Neurocomputing 22, 69–80 (1998)
Liu, Z.Y., Chiu, K.C., Xu, L.: One-Bit-Matching Conjecture for Independent Component Analysis. Neural Computation 16, 383–399 (2004)
Ma, J., Liu, Z.Y., Xu, L.: A Further Result on the ICA One-Bit-Matching Conjecture. Neural Computation 17, 331–334 (2005)
Ma, J., Chen, Z., Amari, S.I.: Analysis of Feasible Solutions of the ICA Problem under the One-Bit-Matching Condition. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 838–845. Springer, Heidelberg (2006)
Ma, J., Gao, D., Ge, F., Amari, S.: A One-Bit-Matching Learning Algorithm for Independent Component Analysis. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 173–180. Springer, Heidelberg (2006)
Vrins, F., Verleysen, M.: Information Theoretic Versus Cumulant-based Contrasts for Multimodal Source Separation. IEEE Signal Processing Letters 12, 190–193 (2005)
Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation 11, 417–441 (1999)
Zhang, L., Cichocki, A., Amari, S.I.: Self-Adaptive Blind Source Separation Based on Activation Function Adaptation. IEEE Trans. Neural Networks 15, 233–243 (2004)
Ma, J., Ge, F., Gao, D.: Two Aadaptive Matching Learning Algorithms for Indepenedent Component Analysis. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 915–920. Springer, Heidelberg (2005)
Welling, M., Weber, M.: A Constrained EM Algorithm for Independent Component Analysis. Neural Computation 13, 677–689 (2001)
Boscolo, R., Pan, H., Roychowdhury, V.P.: Independent Component Analysis Based on Nonparametric Density Estimation. IEEE Trans. Neural Networks 15, 55–64 (2004)
Amari, S.I., Chen, T.P., Cichocki, A.: Stability Analysis of Learning Algorithms for Blind Source Separation. Neural Networks 10, 1345–1351 (1997)
Cardoso, J.F., Laheld, B.: Equivariant Adaptive Source Separation. IEEE Trans. Signal Processing 44, 3017–3030 (1996)
Delfosse, N., Loubaton, P.: Adaptive Blind Separation of Independent Sources: a Deflation Approach. Signal Processing 45, 59–83 (1995)
Hyvärinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Component Analysis. Neural Computation 9, 1483–1492 (1997)
Hyvärinen, A.: Fast and Robust Fixed-point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networks 10, 626–634 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ge, F., Ma, J. (2008). Analysis of the Kurtosis-Sum Objective Function for ICA. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-87732-5_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87731-8
Online ISBN: 978-3-540-87732-5
eBook Packages: Computer ScienceComputer Science (R0)