Novel Coupled Map Lattice Model for Prediction of EEG Signal | SpringerLink
Skip to main content

Novel Coupled Map Lattice Model for Prediction of EEG Signal

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3076 Accesses

Abstract

Considering that electroencephalogram(EEG) signal is a typical chaotic signal induced from the nonlinear spatial temporal dynamic system, in this paper, we propose a new spatial temporal model combined couple map lattices(CML) with normalized radial basis function(NRBF), namely CML-NRBF model. NRBF neural network is employed to reconstruct the nonlinear map to obtain a more robust model with low sensitive for the selection of the basis function parameters. In particular, genetic algorithm (GA) is used to search for the optimal parameters of the proposed model, including the spatial coupling coefficients and the centers of NRBF network. The effectiveness of the proposed model is illustrated in terms of several experiments with real EEG by comparing the prediction and detection results of the presented model with the common RBF network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14299
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babloyantz, A., Destexhe, A.: Low-dimensional Chaos in an Instance of Epilepsy. Proceeding of the National Academy of Sciences of the United States of American 83, 3513–3517 (1986)

    Article  Google Scholar 

  2. Dudkin, A.O., Sbitnev, V.I.: Coupled Map Lattice Simulation of Epileptogenesis in Hippocampal Slice. Biological Cybernetics 78, 479–486 (1998)

    Article  MATH  Google Scholar 

  3. Leung, H., Hennessey, G., Drosopoulos, A.: Signal Detection Using the Radial Basis Function Coupled Map Lattice. IEEE Transaction on Neural Networks 11, 1133–1151 (2000)

    Article  Google Scholar 

  4. Oketani, N., Ushio, T.: Chaotic Synchronization of Globally Coupled Maps with an Application in Communication. International Journal of Bifurcation and Chaos 6, 2145–2152 (1996)

    Article  Google Scholar 

  5. Soong, A.C.K.: Evidence of Chaotic Dynamics Underlying the Human Alpha-Rhythm Electroencephalogram. Biological Cybernetics 62, 55–62 (1989)

    Article  Google Scholar 

  6. Matthew, B.K., Reggie, B., Henry, D.I.A.: Determining Embedding Dimension for Phase-space Reconstruction using a Geometrical Construction. Physical Review A 45, 3403–3411 (1992)

    Article  Google Scholar 

  7. Matthew, B.K., Henry, D.I.A.: False Neighbors and False Strands: A Reliable Minimum Embedding Dimension Algorithm. Physical Review E 66, 026209 (2002)

    Article  Google Scholar 

  8. Cao, L.Y.: Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series. Physica D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  9. Cowper, M.R., Mulgrew, B.C., Unsworth, P.: Nonliear Prediction of Chaotic Signal using a Normalized Radial Basis Function Network. Signal Processing 82, 775–789 (2002)

    Article  MATH  Google Scholar 

  10. Lorenz, E.N.: Dimension0 of Weather and Climate Attractors. Nature 353, 241–244 (1991)

    Article  Google Scholar 

  11. Lachaux, J.P.: Spatial Extension of Brain Activity Fools the Single-Channel Reconstruction of EEG Dynamics. Human Brain Mapping 5, 26–47 (1997)

    Article  Google Scholar 

  12. Haralambos, S., Alex, A., Stefanos, M., George, B.: A New Algorithm for Developing Dynamics Radial Basis Function Neural Network Models based on Genetic Algorithms. Computers and Chemical Engineering 28, 209–217 (2004)

    Article  Google Scholar 

  13. Nan, X., Leung, H.: Reconstruction of Piecewise Chaotic Dynamics Using a Genetic Algorithm Multiple Model Approach. IEEE Transaction on Circuits and Systems 51, 1210–1222 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, M., Lin, L., Chang, G. (2008). Novel Coupled Map Lattice Model for Prediction of EEG Signal. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics