Stability Criteria with Less Variables for Neural Networks with Time-Varying Delay | SpringerLink
Skip to main content

Stability Criteria with Less Variables for Neural Networks with Time-Varying Delay

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

Abstract

In this paper, new delay-dependent stability criterion for neural networks is derived by using a simple integral inequality. The result is in terms of linear matrix inequalities and turn out to be equivalent to the existing result but include the least number of variables. This implies that some redundant variables in the existing stability criterion can be removed while maintaining the efficiency of the stability conditions. With the present stability condition, the computational burden is largely reduced. A numerical example is given to verify the effectiveness of the proposed criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14299
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, Chichester (1993)

    MATH  Google Scholar 

  2. Liu, G.P.: Nonlinear Identification and Control: A Neural Network Approach. Springer, New York (2001)

    MATH  Google Scholar 

  3. Zhang, B.Y., Xu, S., Li, Y.M., Chu, Y.M.: On Global Exponential Stability of High-order Neural Networks with Time-varying Delays. Phys. Lett. A. 366, 69–78 (2007)

    Article  Google Scholar 

  4. Liao, X.F., Chen, G., Sanchez, E.N.: Delay-dependent Exponential Stability Analysis of Delayed Neural Networks: An LMI approach. Neural Netw. 15, 855–866 (2002)

    Article  Google Scholar 

  5. Zeng, Z.G., Wang, J.: Improved Conditions for Global Exponential Stability of Recurrent Neural Networks with Time-varying Delays. IEEE Trans. Neural Netw. 17, 623–635 (2006)

    Article  Google Scholar 

  6. Chen, T., Rong, L.: Delay-independent Stability Analysis of Cohen- Grossberg Neural Networks. Phys. Lett. A 317, 436–449 (2002)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Q., Wei, X., Xu, J.: Stability Analysis for Cellular Neural Networks with Variable Delays. Chaos, Solitons Fractals 28, 331–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gu, K.: An Integral Inequality in the Stability Problem of Time-delay Systems. In: Proceedings of 39th IEEE conference on decision and control, pp. 2805–2810 (2000)

    Google Scholar 

  9. Singh, V.: Global Robust Stability of Delayed Neural Networks: An LMI approach. IEEE Trans. Circuits Syst. II, Exp. Briefs 52, 33–36 (2005)

    Article  Google Scholar 

  10. Wang, Z., Shu, H., Liu, Y., Ho, D.W.C., Liu, X.: Robust Stability Analysis of Generalized Neural Networks with Discrete and Distributed Time Delays. Chaos, Solitons and Fractals 30, 886–896 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, Z., Liu, Y., Li, M., Liu, X.: Stability Analysis for Stochastic Cohen-Grossberg Neural Networks with Mixed Time Delays. IEEE Trans. Neural Netw. 17, 814–820 (2006)

    Article  Google Scholar 

  12. Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Novel Global Asymptotic Stability Criteria for Delayed Cellular Neural Networks. IEEE Trans. Circuits Syst. II, Exp. Briefs 52, 349–353 (2005)

    Article  Google Scholar 

  13. Xu, S., Lam, J.: A new LMI Condition for Delay-dependent Asymptotic Stability of Delayed Hopfield Neural Networks. IEEE Trans. Circuits Syst. II, Exp. Briefs 53, 230–234 (2006)

    Article  Google Scholar 

  14. Hua, C.C., Long, C.N., Guan, X.P.: New Results on Stability Analysis of Neural Networks with Time-varying Delays. Phys. Lett. A 352, 335–340 (2006)

    Article  Google Scholar 

  15. He, Y., Wang, Q.G., Wu, M.: LMI-based Stability Criteria for Neural Networks with Multiple Time-varying Delays. Physica D 212, 126–136 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. He, Y., Liu, G.P., Rees, D.: New Delay-dependent Stability Criteria for Neural Networks with Time-varying Delay. IEEE Trans. Neural Netw. 18, 310–314 (2007)

    Article  Google Scholar 

  17. Park, J.H.: Robust Stability of Bidirectional Associative Memory Neural Networks with Time Delays. Phys. Lett. A 359, 494–499 (2006)

    Article  Google Scholar 

  18. Yang, H., Chu, T., Zhang, C.: Exponential Stability of Neural Networks with Variable Delays via LMI Approach. Chaos, Solitons and Fractals 30, 133–139 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cho, H.J., Park, J.H.: Novel Delay-dependent Robust Stability Criterion of Delayed Cellular Neural Networks. Chaos, Solitons and Fractals 32, 1194–1200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, Y., Wang, Z., Liu, X.: Global Exponential Stability of Generalized Recurrent Neural Networks with Discrete and Distributed Delays. Neural Networks 19, 667–675 (2006)

    Article  MATH  Google Scholar 

  21. Li, T., Guo, L., Sun, C.Y.: Further Result on Asymptotic Stability Criterion of Neural Networks with Time-varying Delays. Neurocomputing 71, 439–447 (2007)

    Article  Google Scholar 

  22. Li, T., Guo, L., Sun, C.Y.: Robust Stability for Neural Networks with Time-varying Delays and Linear Fractional Uncertainties. Neurocomputing 71, 421–427 (2007)

    Article  Google Scholar 

  23. Zhang, H.G., Wang, Z.S.: Global Asymptotic Stability of Delayed Cellular Neural Networks. IEEE Trans. Neural Netw. 18, 947–950 (2007)

    Article  Google Scholar 

  24. Cao, J.D., Xiao, M.: Stability and Hopf Bifurcation in a Simplified BAM Neural Network with Two Time Delays. IEEE Trans. Neural Netw. 18, 416–430 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, T., Ye, X., Zhang, Y. (2008). Stability Criteria with Less Variables for Neural Networks with Time-Varying Delay. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics