Abstract
The general projection neural network (GPNN) is a versatile recurrent neural network model capable of solving a variety of optimization problems and variational inequalities. In a recent article [IEEE Trans. Neural Netw., 18(6), 1697-1708, 2007], the linear case of GPNN was studied extensively from the viewpoint of stability analysis, and it was utilized to solve the generalized linear variational inequality with various types of constraints. In the present paper we supplement three global exponential convergence results for the GPNN for solving these problems. The first one is different from those shown in the original article, and the other two are improved versions of two results in that article. The validity of the new results are demonstrated by numerical examples.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hu, X., Wang, J.: Design of General Projection Neural Networks for Solving Monotone Linear Variational Inequalities and Linear and Quadratic Optimization Problems. IEEE Trans. Syst., Man, Cybern. B 37, 1414–1421 (2007)
He, B.: Solution and Applications of a Class of General Linear Variational Inequalties. Sci. China Ser. A-Math. 39, 395–404 (1996)
Hu, X.: Applications of the General Projection Neural Network in Solving Extended Linear-Quadratic Programming Problems with Linear Constraints. Neurocomputing (accepted)
Gao, X.B.: A Neural Network for a Class of Extended Linear Variational Inequalities. Chinese Jounral of Electronics 10, 471–475 (2001)
Xia, Y., Wang, J.: A General Projection Neural Network for Solving Monotone Variational Inequalities and Related Optimization Problems. IEEE Trans. Neural Netw. 15, 318–328 (2004)
Hu, X., Wang, J.: Solving Generally Constrained Generalized Linear Variational Inequalities Using the General Projection Neural Networks. IEEE Trans. Neural Netw. 18, 1697–1708 (2007)
Zeng, Z., Wang, J., Liao, X.: Global Exponential Stability of a General Class of Recurrent Neural Networks with Time-Varying Delays. IEEE Trans. Circuits Syst. I 50, 1353–1358 (2003)
Xia, Y., Feng, G., Kamel, M.: Development and Analysis of a Neural Dynamical Approach to Nonlinear Programming Problems. IEEE Trans. Automatic Control 52, 2154–2159 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, X., Zeng, Z., Zhang, B. (2008). Three Global Exponential Convergence Results of the GPNN for Solving Generalized Linear Variational Inequalities. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-87732-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87731-8
Online ISBN: 978-3-540-87732-5
eBook Packages: Computer ScienceComputer Science (R0)