Abstract
This contribution describes an EM-like piecewise linear regression algorithm that uses information about the target variable to determine a meaningful partitioning of the input space. The main goal of this approach is to incorporate information about the target variable in the prototype selection process of a piecewise regression approach. Furthermore, the proposed approach is designed to provide an interpretable solution by restricting the dimensionality of the local regression models. We will show that our approach achieves a similar predictive performance on benchmark problems compared to standard regression methods – while the model complexity of our approach is reduced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ritter, H.: Learning with the self-organizing map. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 379–384. Elsevier, Amsterdam (1991)
Hathaway, R.J., Bezdek, J.C.: Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems 1(3), 195–204 (1993)
Ferrari-Trecate, G., Muselli, M.: A new learning method for piecewise linear regression. In: Proc. of International Conference on Artificial Neural Networks, pp. 444–449. Springer, Heidelberg (2002)
Höppner, F., Klawonn, F.: Improved fuzzy partitions for fuzzy regression models. International Journal of Approximate Reasoning 32(2-3), 85–102 (2003)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B 39(1), 1–38 (1977)
Nusser, S., Otte, C., Hauptmann, W.: Learning binary classifiers for applications in safety-related domains. In: Proc. of 17th Workshop Computational Intelligence, Universitätsverlag Karlsruhe, pp. 139–151 (2007)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nusser, S., Otte, C., Hauptmann, W. (2008). An EM-Based Piecewise Linear Regression Algorithm. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-87656-4_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87655-7
Online ISBN: 978-3-540-87656-4
eBook Packages: Computer ScienceComputer Science (R0)