An EM-Based Piecewise Linear Regression Algorithm | SpringerLink
Skip to main content

An EM-Based Piecewise Linear Regression Algorithm

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

Abstract

This contribution describes an EM-like piecewise linear regression algorithm that uses information about the target variable to determine a meaningful partitioning of the input space. The main goal of this approach is to incorporate information about the target variable in the prototype selection process of a piecewise regression approach. Furthermore, the proposed approach is designed to provide an interpretable solution by restricting the dimensionality of the local regression models. We will show that our approach achieves a similar predictive performance on benchmark problems compared to standard regression methods – while the model complexity of our approach is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ritter, H.: Learning with the self-organizing map. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 379–384. Elsevier, Amsterdam (1991)

    Google Scholar 

  2. Hathaway, R.J., Bezdek, J.C.: Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems 1(3), 195–204 (1993)

    Article  Google Scholar 

  3. Ferrari-Trecate, G., Muselli, M.: A new learning method for piecewise linear regression. In: Proc. of International Conference on Artificial Neural Networks, pp. 444–449. Springer, Heidelberg (2002)

    Google Scholar 

  4. Höppner, F., Klawonn, F.: Improved fuzzy partitions for fuzzy regression models. International Journal of Approximate Reasoning 32(2-3), 85–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Nusser, S., Otte, C., Hauptmann, W.: Learning binary classifiers for applications in safety-related domains. In: Proc. of 17th Workshop Computational Intelligence, Universitätsverlag Karlsruhe, pp. 139–151 (2007)

    Google Scholar 

  7. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nusser, S., Otte, C., Hauptmann, W. (2008). An EM-Based Piecewise Linear Regression Algorithm. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics