Abstract
Generative Topographic Mapping (GTM) is a probabilistic latent variable model for multivariate data clustering and visualization. It tries to capture the relevant data structure by defining a low-dimensional manifold embedded in the high-dimensional data space. This requires the assumption that the data can be faithfully represented by a manifold of much lower dimension than that of the observed space. Even when this assumption holds, the approximation of the data may, for some datasets, require plenty of folding, resulting in an entangled manifold and in breaches of topology preservation that would hamper data visualization and cluster definition. This can be partially avoided by modifying the GTM learning procedure so as to penalize divergences between the Euclidean distances from the data to the model prototypes and the corresponding geodesic distances along the manifold. We define and assess this strategy, comparing it to the performance of the standard GTM, using several artificial datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)
Bishop, C.M., Svensén, M., Williams, C.K.I.: The Generative Topographic Mapping. Neural Computation 10(1), 215–234 (1998)
Vellido, A.: Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19(10), 1624–1635 (2006)
Vellido, A., Lisboa, P.J.G., Vicente, D.: Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69(7-9), 754–768 (2006)
Archambeau, C., Verleysen, M.: Manifold constrained finite Gaussian mixtures. In: Cabestany, J., Gonzalez Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 820–828. Springer, Heidelberg (2005)
Vincent, P., Bengio, Y.: Manifold parzen windows. In: Thrun, S., Becker, S., Obermayer, K. (eds.) NIPS, vol. 15, pp. 825–832. MIT Press, Cambridge (2003)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear Distance Analysis versus Isomap. In: Proceedings of European Symposium on Artificial Neural Networks (ESANN), pp. 185–192 (2002)
Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds. Technical report, Stanford University, CA (2000)
Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cruz-Barbosa, R., Vellido, A. (2008). Unfolding the Manifold in Generative Topographic Mapping. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-87656-4_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87655-7
Online ISBN: 978-3-540-87656-4
eBook Packages: Computer ScienceComputer Science (R0)