Simple Clipping Algorithms for Reduced Convex Hull SVM Training | SpringerLink
Skip to main content

Simple Clipping Algorithms for Reduced Convex Hull SVM Training

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

Abstract

It is well known that linear slack penalty SVM training is equivalent to solving the Nearest Point Problem (NPP) over the so-called μ-Reduced Convex Hulls, that is, convex combinations of the positive and negative samples with coefficients bounded by a μ < 1 value. In this work we give a simple approach to the classical Gilbert-Schlesinger-Kozinec (GSK) and Mitchell-Demyanov-Malozemov (MDM) algorithms for NPP that naturally leads to their updating pattern selection criteria and suggests an easy way to extend them to coefficient clipping algorithms for NPP over the μ-Reduced Convex Hulls. Although the extended GSK algorithm does not perform as well as the more complex recent proposal by Mavroforakis and Theodoridis, clipping MDM coefficient updates results in a fast and efficient algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  2. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods – Support Vector Machines, pp. 185–208 (1999)

    Google Scholar 

  3. Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical. In: Advances in Kernel Methods – Support Vector Machines, pp. 169–184 (1999)

    Google Scholar 

  4. Bennett, K., Bredensteiner, E.: Duality and Geometry in SVM Classifiers. In: 17th Int. Conf. on Machine Learning, pp. 57–64 (2000)

    Google Scholar 

  5. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE Trans. on Neural Networks 11(1), 124–136 (2000)

    Article  Google Scholar 

  6. Franc, V., Hlaváč, V.: Simple Solvers for Large Quadratic Programming Tasks. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 75–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gilbert, E.: Minimizing the Quadratic Norm on a Convex Set. SIAM J. Contr. 4, 61–79 (1966)

    Article  MATH  Google Scholar 

  8. Franc, V., Hlaváč, V.: An Iterative Algorithm Learning the Maximal Margin Classifier. Pattern Recognition 36, 1985–1996 (2003)

    Article  MATH  Google Scholar 

  9. Mitchell, B., Dem’yanov, V., Malozemov, V.: Finding the Point of a Polyhedron Closest to the Origin. SIAM J. Contr. 12, 19–26 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shawe-Taylor, J., Cristianini, N.: On the Generalisation of Soft Margin Algorithms. IEEE Trans. on Information Theory 48(10), 2711–2735 (2002)

    Article  MathSciNet  Google Scholar 

  11. Mavroforakis, M., Theodoridis, S.: A Geometric Approach to Support Vector Machine (SVM) Classification. IEEE Trans. on Neural Networks 17(3), 671–682 (2006)

    Article  Google Scholar 

  12. Tao, Q., Wu, G.W., Wang, J.: A General Soft Method for Learning SVM Classifiers with L1-Norm Penalty. Pattern Recognition 41(3), 939–948 (2008)

    Article  MATH  Google Scholar 

  13. Rätsch, G.: Benchmark Repository, http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López, J., Barbero, Á., Dorronsoro, J.R. (2008). Simple Clipping Algorithms for Reduced Convex Hull SVM Training. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics