Experiments in Multi Agent Learning | SpringerLink
Skip to main content

Experiments in Multi Agent Learning

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

Abstract

Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. The results show that, as a result of knowledge fusion, the accuracy of initial theories is improved as well as the accuracy of the monolithic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giráldez, J.I.: Modelo de toma de decisiones y aprendizaje en sistemas multiagente, Tesis para el grado de doctor en Informática, Universidad Politécnica de Madrid (1999)

    Google Scholar 

  2. Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, W., Chan, P.: JAM: Java Agents for meta-learning over distributed databases. In: Third International Conference in Knowledge Discovery and Data Mining (KDD 1997). Newport Beach, California (1997)

    Google Scholar 

  3. Barandela, R., Sánchez, J.S., Valdovinos, R.M.: New applications of ensembles of classifiers. Pattern Analysis and Applications 6(3), 245–256 (2003)

    Article  MathSciNet  Google Scholar 

  4. Prodromidis, A.L., Stolfo, S.J., Chan, P.: Advances of Distributed Data Mining. Kargupta, H., Chan, P. (eds.). AAAI press, Menlo Park (2000)

    Google Scholar 

  5. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  7. Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  8. http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaya, M.C., Giraldez, J.I. (2008). Experiments in Multi Agent Learning. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics