Abstract
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. The results show that, as a result of knowledge fusion, the accuracy of initial theories is improved as well as the accuracy of the monolithic solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giráldez, J.I.: Modelo de toma de decisiones y aprendizaje en sistemas multiagente, Tesis para el grado de doctor en Informática, Universidad Politécnica de Madrid (1999)
Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, W., Chan, P.: JAM: Java Agents for meta-learning over distributed databases. In: Third International Conference in Knowledge Discovery and Data Mining (KDD 1997). Newport Beach, California (1997)
Barandela, R., Sánchez, J.S., Valdovinos, R.M.: New applications of ensembles of classifiers. Pattern Analysis and Applications 6(3), 245–256 (2003)
Prodromidis, A.L., Stolfo, S.J., Chan, P.: Advances of Distributed Data Mining. Kargupta, H., Chan, P. (eds.). AAAI press, Menlo Park (2000)
Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)
Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gaya, M.C., Giraldez, J.I. (2008). Experiments in Multi Agent Learning. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-87656-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87655-7
Online ISBN: 978-3-540-87656-4
eBook Packages: Computer ScienceComputer Science (R0)