Analysis-by-Synthesis by Learning to Invert Generative Black Boxes | SpringerLink
Skip to main content

Analysis-by-Synthesis by Learning to Invert Generative Black Boxes

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

For learning meaningful representations of data, a rich source of prior knowledge may come in the form of a generative black box, e.g. a graphics program that generates realistic facial images. We consider the problem of learning the inverse of a given generative model from data. The problem is non-trivial because it is difficult to create labelled training cases by hand, and the generative mapping is a black box in the sense that there is no analytic expression for its gradient. We describe a way of training a feedforward neural network that starts with just one labelled training example and uses the generative black box to “breed” more training data. As learning proceeds, the training set evolves and the labels that the network assigns to unlabelled training data converge to their correct values. We demonstrate our approach by learning to invert a generative model of eyes and an active appearance model of faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, Y., Terzopoulos, D., Waters, K.: Realistic modeling for facial animation. In: SIGGRAPH (1995)

    Google Scholar 

  2. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. In: SIGGRAPH (2005)

    Google Scholar 

  3. Moriyama, T., Kanade, T., Xiao, J., Cohn, J.F.: Meticulously detailed eye region model and its application to analysis of facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 738–752 (2006)

    Article  Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  5. Jordan, M., Rumelhart, D.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nair, V., Susskind, J., Hinton, G.E. (2008). Analysis-by-Synthesis by Learning to Invert Generative Black Boxes. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics