Abstract
For any integer ρ ≥ 1 and for any prime power q, the explicit construction of an infinite family of completely transitive (and completely regular) q-ary codes with minimum distance d = 3 and with covering radius ρ is given.
This work has been partially supported by the Spanish MEC and the European FEDER Grants MTM2006-03250 and TSI2006-14005-C02-01 and also by the Russian fund of fundamental researches (the number of project 06 - 01 - 00226).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borges, J., Rifa, J., Zinoviev, V.A.: On non-antipodal binary completely regular codes. Discrete Mathematics 308(16), 3508–3525 (2008)
Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. Elsevier, Amsterdam (1997)
Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Research Reports Supplements 10 (1973)
Giudici, M., Praeger, C.E.: Completely Transitive Codes in Hamming Graphs. Europ. J. Combinatorics 20, 647–662 (1999)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, New York (1977)
Neumaier, A.: Completely regular codes. Discrete Maths. 106/107, 335–360 (1992)
Rifa, J., Zinoviev, V.A.: On new completely regular q-ary codes. Problems of Information Transmission 43(2) (2007)
Rifa, J., Zinoviev, V.A.: On new completely regular codes from perfect codes. In: Proceedings of the Tenth Intern. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-X), Zvenigorod, Russia, September 03-09 (2006)
Solé, P.: Completely Regular Codes and Completely Transitive Codes. Discrete Maths. 81, 193–201 (1990)
Semakov, N.V., Zinoviev, V.A., Zaitsev, G.V.: Class of maximal equidistant codes. Problems of Information Transmission 5(2), 84–87 (1969)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rifà, J., Zinoviev, V. (2008). On the Kronecker Product Construction of Completely Transitive q-Ary Codes. In: Barbero, Á. (eds) Coding Theory and Applications. Lecture Notes in Computer Science, vol 5228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87448-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-87448-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87447-8
Online ISBN: 978-3-540-87448-5
eBook Packages: Computer ScienceComputer Science (R0)