A Large Spectrum of Free Oceanic Oscillations | SpringerLink
Skip to main content

A Large Spectrum of Free Oceanic Oscillations

  • Conference paper
High Performance Computing on Vector Systems 2008
  • 614 Accesses

Abstract

An ocean model has been developed to compute a large set of barotropic free oscillations with explicit consideration of dissipative terms and the full ocean loading and self-attraction effect. The Implicitly Restarted Arnoldi Method is utilized to determine these free oscillations. It is a highly efficient approach to solve large scale eigenvalue problem, in particular if the matrix entries are generally nonzero. The mean performance on the SX-8 supercomputer is up to 3.4 TFlops on 512 CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quaterly of Applied Mathematics 9, 17–29, (1951).

    MATH  MathSciNet  Google Scholar 

  2. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: Scalapack users’ guide. SIAM (1997)

    Google Scholar 

  3. Farrell, W.E.: Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797 (1972)

    Article  Google Scholar 

  4. Francis, O., Mazzega, P.: Global charts of of ocean tide loading effects. J. Geophys. Res. 95, 411–424 (1990)

    Article  Google Scholar 

  5. Gaviño, J.H.R.: Über die Bestimmung von reibungslosen barotropen Eigenschwingungen des Weltozeans mittels der Lanczos-Methode. PhD thesis, University of Hamburg (1981)

    Google Scholar 

  6. Golub G., van Loan, C.: Matrix Computations, 2 edn. Johns Hopkins University Press (1989)

    Google Scholar 

  7. Gotlib, V.Y., Kagan, B.A.: On the resonance excitation of semidiurnal tides in the world ocean. Fizika atmosfery i okeana 17, 502–512 (1981)

    Google Scholar 

  8. Ipsen, I.C.F.: A history of inverse iteration. In: B. Huppert, H. Schneider (eds.) Helmut Wielandt, Mathematische Werke, Mathematical Works, II: Matrix Theory and Analysis, pp. 464–472. Walter de Gruyter, New York (1996)

    Google Scholar 

  9. Kowalik, Z.: Modeling of topographically amplified diurnal tides in the nordic seas. J. Phys. Oceanogr. 24, 1717–1731 (1994)

    Article  Google Scholar 

  10. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards 45, 255–282 (1950). Research Paper 2133

    MathSciNet  Google Scholar 

  11. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK user’s guide: Solution of large scale eigenvalue problems by implicitly restarted arnoldi methods. Technical report, Department of Computational and Applied Mathematics, Rice University (1996)

    Google Scholar 

  12. Longuet-Higgins, M.S.: The eigenfunctions of laplace’s tidal equations over a sphere. Phil. Trans. Roy. Soc. London A262, 511–581 (1968)

    Article  MathSciNet  Google Scholar 

  13. Miller, A.J.: On the barotropic planetary oscillations of the pacific. J. Mar. Res. 47, 569–594 (1989)

    Article  Google Scholar 

  14. Miller, A.J., Lermusiaux, P.F.J., Poulain, P.: A topographic-rossby mode resonance over the iceland-faeroe ridge. J. Phys. Oceanogr. 26, 2735–2747 (1996)

    Article  Google Scholar 

  15. Müller, M.: Barotrope Eigenschwingungen im Globalen Ozean unter Berücksichtigung des vollen Selbstanziehungs- und Auflasteffektes. Master’s thesis, University of Hamburg (2003)

    Google Scholar 

  16. Müller, M.: The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect. Geophys. Res. Lett. 34 (L05606) (2007)

    Article  Google Scholar 

  17. Müller, M.: Synthesis of forced oscillations, Part 1: Tidal dynamics and the influence of LSA Ocean Modelling. 20, 207–222 (2008)

    Article  Google Scholar 

  18. Platzman, G.W., Curtis, G.A., Hansen, K.S., Slater, R.D.: Normal modes of the world ocean, Part 2: Description of modes in the range 8 to 80 hours. J. Phys. Oceanogr. 11, 579–603 (1981)

    Article  Google Scholar 

  19. Rao, D.B.: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech. 25, 523–555 (1966)

    Article  Google Scholar 

  20. Ray, R.D.: Ocean self-attraction and loading in numerical tidal models. Mar. Geod. 21, 181–192 (1998)

    Article  Google Scholar 

  21. Saad, Y.: Numerical methods for large eigenvalue problems: theory and algorithms. John Wiley, New York (1992)

    MATH  Google Scholar 

  22. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI — The complete reference vol. 1: The MPI core. MIT Press (1998)

    Google Scholar 

  23. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13, 357–385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wielandt, H.: Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Z. 50, 93–143 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zahel, W.: Mathematical modelling of global interaction between ocean tides and earth tides. Phys. Earth Planet. Interior 21, 202–217 (1980)

    Article  Google Scholar 

  26. Zahel, W.: Astronomical tides. In: J. Sündermann (ed.) Numerical Data and Functional Relationships in Science and Technology, vol. 3c of Landolt–Börnstein, chap. 6.4, pp. 83–134. Springer-Verlag (1986)

    Google Scholar 

  27. Zahel, W.: Modeling ocean tides with and without assimilating data. J. Geophys. Res. 12, 20379–20391 (1991)

    Article  Google Scholar 

  28. Zahel, W., Müller, M.: The computation of the free barotropic oscillations of a global ocean model including friction and loading effects. Ocean Dynamics 55, 137–161 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Resch Sabine Roller Katharina Benkert Martin Galle Wolfgang Bez Hiroaki Kobayashi Toshio Hirayama

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, M. (2009). A Large Spectrum of Free Oceanic Oscillations. In: Resch, M., et al. High Performance Computing on Vector Systems 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85869-0_16

Download citation

Publish with us

Policies and ethics