Abstract
An ocean model has been developed to compute a large set of barotropic free oscillations with explicit consideration of dissipative terms and the full ocean loading and self-attraction effect. The Implicitly Restarted Arnoldi Method is utilized to determine these free oscillations. It is a highly efficient approach to solve large scale eigenvalue problem, in particular if the matrix entries are generally nonzero. The mean performance on the SX-8 supercomputer is up to 3.4 TFlops on 512 CPUs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quaterly of Applied Mathematics 9, 17–29, (1951).
Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: Scalapack users’ guide. SIAM (1997)
Farrell, W.E.: Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797 (1972)
Francis, O., Mazzega, P.: Global charts of of ocean tide loading effects. J. Geophys. Res. 95, 411–424 (1990)
Gaviño, J.H.R.: Über die Bestimmung von reibungslosen barotropen Eigenschwingungen des Weltozeans mittels der Lanczos-Methode. PhD thesis, University of Hamburg (1981)
Golub G., van Loan, C.: Matrix Computations, 2 edn. Johns Hopkins University Press (1989)
Gotlib, V.Y., Kagan, B.A.: On the resonance excitation of semidiurnal tides in the world ocean. Fizika atmosfery i okeana 17, 502–512 (1981)
Ipsen, I.C.F.: A history of inverse iteration. In: B. Huppert, H. Schneider (eds.) Helmut Wielandt, Mathematische Werke, Mathematical Works, II: Matrix Theory and Analysis, pp. 464–472. Walter de Gruyter, New York (1996)
Kowalik, Z.: Modeling of topographically amplified diurnal tides in the nordic seas. J. Phys. Oceanogr. 24, 1717–1731 (1994)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards 45, 255–282 (1950). Research Paper 2133
Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK user’s guide: Solution of large scale eigenvalue problems by implicitly restarted arnoldi methods. Technical report, Department of Computational and Applied Mathematics, Rice University (1996)
Longuet-Higgins, M.S.: The eigenfunctions of laplace’s tidal equations over a sphere. Phil. Trans. Roy. Soc. London A262, 511–581 (1968)
Miller, A.J.: On the barotropic planetary oscillations of the pacific. J. Mar. Res. 47, 569–594 (1989)
Miller, A.J., Lermusiaux, P.F.J., Poulain, P.: A topographic-rossby mode resonance over the iceland-faeroe ridge. J. Phys. Oceanogr. 26, 2735–2747 (1996)
Müller, M.: Barotrope Eigenschwingungen im Globalen Ozean unter Berücksichtigung des vollen Selbstanziehungs- und Auflasteffektes. Master’s thesis, University of Hamburg (2003)
Müller, M.: The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect. Geophys. Res. Lett. 34 (L05606) (2007)
Müller, M.: Synthesis of forced oscillations, Part 1: Tidal dynamics and the influence of LSA Ocean Modelling. 20, 207–222 (2008)
Platzman, G.W., Curtis, G.A., Hansen, K.S., Slater, R.D.: Normal modes of the world ocean, Part 2: Description of modes in the range 8 to 80 hours. J. Phys. Oceanogr. 11, 579–603 (1981)
Rao, D.B.: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech. 25, 523–555 (1966)
Ray, R.D.: Ocean self-attraction and loading in numerical tidal models. Mar. Geod. 21, 181–192 (1998)
Saad, Y.: Numerical methods for large eigenvalue problems: theory and algorithms. John Wiley, New York (1992)
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI — The complete reference vol. 1: The MPI core. MIT Press (1998)
Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13, 357–385 (1992)
Wielandt, H.: Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Z. 50, 93–143 (1944)
Zahel, W.: Mathematical modelling of global interaction between ocean tides and earth tides. Phys. Earth Planet. Interior 21, 202–217 (1980)
Zahel, W.: Astronomical tides. In: J. Sündermann (ed.) Numerical Data and Functional Relationships in Science and Technology, vol. 3c of Landolt–Börnstein, chap. 6.4, pp. 83–134. Springer-Verlag (1986)
Zahel, W.: Modeling ocean tides with and without assimilating data. J. Geophys. Res. 12, 20379–20391 (1991)
Zahel, W., Müller, M.: The computation of the free barotropic oscillations of a global ocean model including friction and loading effects. Ocean Dynamics 55, 137–161 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, M. (2009). A Large Spectrum of Free Oceanic Oscillations. In: Resch, M., et al. High Performance Computing on Vector Systems 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85869-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-85869-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85868-3
Online ISBN: 978-3-540-85869-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)