Abstract
One of the key issues in Case-Based Reasoning (CBR) systems is the efficient retrieval of cases when the case base is huge and/or it contains uncertainty and partial knowledge. We tackle these issues by organizing the case memory using an unsupervised clustering technique to identify data patterns for promoting all CBR steps. Moreover, another useful property of these patterns is that they provide to the user additional information about why the cases have been selected and retrieved through symbolic descriptions. This work analyses the introduction of this knowledge in the retrieve phase. The new strategies improve the case retrieval configuration procedure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological variations, and system approaches. AI Communications 7, 39–59 (1994)
Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Machine Learning 41(1), 259–294 (2000)
Bichindaritz, I.: Memory organization as the missing link between case-based reasoning and information retrieval in biomedicine. Computational Intelligence 22(3-4), 148–160 (2006)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Chang, P., Lai, C.: A hybrid system combining self-organizing maps with case-based reasoning in wholesaler’s new-release book forecasting. Expert Syst. Appl. 29(1), 183–192 (2005)
Cheetham, W., Shiu, S., Weber, R.: Soft case-based reasoning. The Knowledge Engineering 0, 1–4 (2005)
Cordón, O., Herrera, E.: Special issue on soft computing applications to intelligent information retrieval on internet. Int. Jour. of Approximate Reasoning 34, 2–3 (2003)
Aiken, J., Corchado, E., Corchado, J.M.: Ibr retrieval method based on topology preserving mappings. Journal of Experimental & Theoretical Artificial Intelligence 16(3), 145–160 (2004)
Fornells, A., Armengol, E., Golobardes, E.: Explanation of a clustered case memory organization. In: Artificial Intelligence Research and Development, vol. 160, pp. 153–160. IOS Press, Amsterdam (2007)
Fornells, A., Golobardes, E.: Case-base maintenance in an associative memory organized by a self-organizing map. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems, vol. 44, pp. 312–319. Springer, Heidelberg (2007)
Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Maciá, N., Bernadó, E.: A methodology for analyzing the case retrieval from a clustered case memory. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 122–136. Springer, Heidelberg (2007)
Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Vilasís, X.: Patterns out of cases using kohonen maps in breast cancer diagnosis. International Journal of Neural Systems 18(1), 33–43 (2008)
Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory organization: Analysing computational time and soft computing capabilities. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2000)
Lechevallier, Y., Verde, R., de Carvalho, F.: Symbolic clustering of large datasets. In: Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 193–201. Springer, Heidelberg (2006)
Lenz, M., Burkhard, H.D., Brückner, S.: Applying case retrieval nets to diagnostic tasks in technical domains. In: Proc. of the 3rd European Workshop on Advances in Case-Based Reasoning, pp. 219–233. Springer, Heidelberg (1996)
Malek, M., Amy, B.: A pre-processing model for integrating cbr and prototype-based neural networks. In: Connectionism-symbolic Integration, Erlbaum, Mahwah (2007)
M. Oja, S. Kaski, and T. Kohonen. Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 (2003), http://www.cis.hut.fi/research/refs/
Porter, B.: Protos: An experiment in knowledge acquisition for heuristic classification tasks. In: Proceedings First International Meeting on Advances in Learning, Les Arcs, France, pp. 159–174 (1986)
Rissland, E.L., Skalak, D.B., Friedman, M.: Case retrieval through multiple indexing and heuristic search. In: Int. Joint Conf. on Art. Intelligence, pp. 902–908 (1993)
Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based classifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2), 37–42 (2003)
Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval step in case-based reasoning. In: 1st European Workshop on Topics in Case-Based Reasoning, vol. 837, pp. 167–181. Springer, Heidelberg (1994)
Yang, Q., Wu, J.: Enhancing the effectiveness of interactive case-based reasoning with clustering and decision forests. Applied Intelligence 14(1) (2001)
Zenko, B., Dzeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fornells, A., Armengol, E., Golobardes, E. (2008). Retrieval Based on Self-explicative Memories. In: Althoff, KD., Bergmann, R., Minor, M., Hanft, A. (eds) Advances in Case-Based Reasoning. ECCBR 2008. Lecture Notes in Computer Science(), vol 5239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85502-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-85502-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85501-9
Online ISBN: 978-3-540-85502-6
eBook Packages: Computer ScienceComputer Science (R0)