Retrieval Based on Self-explicative Memories | SpringerLink
Skip to main content

Retrieval Based on Self-explicative Memories

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5239))

Included in the following conference series:

Abstract

One of the key issues in Case-Based Reasoning (CBR) systems is the efficient retrieval of cases when the case base is huge and/or it contains uncertainty and partial knowledge. We tackle these issues by organizing the case memory using an unsupervised clustering technique to identify data patterns for promoting all CBR steps. Moreover, another useful property of these patterns is that they provide to the user additional information about why the cases have been selected and retrieved through symbolic descriptions. This work analyses the introduction of this knowledge in the retrieve phase. The new strategies improve the case retrieval configuration procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological variations, and system approaches. AI Communications 7, 39–59 (1994)

    Google Scholar 

  2. Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Machine Learning 41(1), 259–294 (2000)

    Article  MATH  Google Scholar 

  3. Bichindaritz, I.: Memory organization as the missing link between case-based reasoning and information retrieval in biomedicine. Computational Intelligence 22(3-4), 148–160 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  5. Chang, P., Lai, C.: A hybrid system combining self-organizing maps with case-based reasoning in wholesaler’s new-release book forecasting. Expert Syst. Appl. 29(1), 183–192 (2005)

    Article  MathSciNet  Google Scholar 

  6. Cheetham, W., Shiu, S., Weber, R.: Soft case-based reasoning. The Knowledge Engineering 0, 1–4 (2005)

    Google Scholar 

  7. Cordón, O., Herrera, E.: Special issue on soft computing applications to intelligent information retrieval on internet. Int. Jour. of Approximate Reasoning 34, 2–3 (2003)

    Google Scholar 

  8. Aiken, J., Corchado, E., Corchado, J.M.: Ibr retrieval method based on topology preserving mappings. Journal of Experimental & Theoretical Artificial Intelligence 16(3), 145–160 (2004)

    Article  MATH  Google Scholar 

  9. Fornells, A., Armengol, E., Golobardes, E.: Explanation of a clustered case memory organization. In: Artificial Intelligence Research and Development, vol. 160, pp. 153–160. IOS Press, Amsterdam (2007)

    Google Scholar 

  10. Fornells, A., Golobardes, E.: Case-base maintenance in an associative memory organized by a self-organizing map. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems, vol. 44, pp. 312–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Maciá, N., Bernadó, E.: A methodology for analyzing the case retrieval from a clustered case memory. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 122–136. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Vilasís, X.: Patterns out of cases using kohonen maps in breast cancer diagnosis. International Journal of Neural Systems 18(1), 33–43 (2008)

    Article  Google Scholar 

  13. Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory organization: Analysing computational time and soft computing capabilities. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2000)

    Google Scholar 

  15. Lechevallier, Y., Verde, R., de Carvalho, F.: Symbolic clustering of large datasets. In: Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 193–201. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Lenz, M., Burkhard, H.D., Brückner, S.: Applying case retrieval nets to diagnostic tasks in technical domains. In: Proc. of the 3rd European Workshop on Advances in Case-Based Reasoning, pp. 219–233. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Malek, M., Amy, B.: A pre-processing model for integrating cbr and prototype-based neural networks. In: Connectionism-symbolic Integration, Erlbaum, Mahwah (2007)

    Google Scholar 

  18. M. Oja, S. Kaski, and T. Kohonen. Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 (2003), http://www.cis.hut.fi/research/refs/

  19. Porter, B.: Protos: An experiment in knowledge acquisition for heuristic classification tasks. In: Proceedings First International Meeting on Advances in Learning, Les Arcs, France, pp. 159–174 (1986)

    Google Scholar 

  20. Rissland, E.L., Skalak, D.B., Friedman, M.: Case retrieval through multiple indexing and heuristic search. In: Int. Joint Conf. on Art. Intelligence, pp. 902–908 (1993)

    Google Scholar 

  21. Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based classifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2), 37–42 (2003)

    Google Scholar 

  22. Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval step in case-based reasoning. In: 1st European Workshop on Topics in Case-Based Reasoning, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

    Google Scholar 

  23. Yang, Q., Wu, J.: Enhancing the effectiveness of interactive case-based reasoning with clustering and decision forests. Applied Intelligence 14(1) (2001)

    Google Scholar 

  24. Zenko, B., Dzeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus-Dieter Althoff Ralph Bergmann Mirjam Minor Alexandre Hanft

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fornells, A., Armengol, E., Golobardes, E. (2008). Retrieval Based on Self-explicative Memories. In: Althoff, KD., Bergmann, R., Minor, M., Hanft, A. (eds) Advances in Case-Based Reasoning. ECCBR 2008. Lecture Notes in Computer Science(), vol 5239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85502-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85502-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85501-9

  • Online ISBN: 978-3-540-85502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics