Efficient Algorithms for Fixed-Precision Instances of Bin Packing and Euclidean TSP | SpringerLink
Skip to main content

Efficient Algorithms for Fixed-Precision Instances of Bin Packing and Euclidean TSP

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

This paper presents new, polynomial time algorithms for Bin Packing and Euclidean TSP under fixed precision. In this model, integers are encoded as floating point numbers, each with a mantissa and an exponent. Thus, an integer i with \(i = a_i2^{t_i}\) has mantissa a i and exponent t i . This natural representation is the norm in real-world optimization. A set of integers I has L-bit precision if \(\max_{i \in I} a_i< 2^L\). In this framework, we show an exact algorithm for Bin Packing and an FPTAS for Euclidean TSP which run in time poly(n) and poly(n + log1/ε), respectively, when L is a fixed constant. Our algorithm for the later problem is exact when distances are given by the L 1 norm. In contrast, both problems are strongly NP-Hard (and yield PTASs) when precision is unbounded. These algorithms serve as evidence of the significance of the class of fixed precision polynomial time solvable problems. Taken together with algorithms for the Knapsack and Pm||C max problems introduced by Orlin et al., [10] we see that fixed precision defines a class incomparable to polynomial time approximation schemes, covering at least four distinct natural NP-hard problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B.: Inverse Optimization. Operations Research 49(5), 771–783 (2001)

    Article  MathSciNet  Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM (JACM) 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balasubramanian, R., Fellows, M.R., Raman, V.: An improved fixed-parameter algorithm for vertex cover. Information Processing Letters 65(3), 163–168 (1998)

    Article  MathSciNet  Google Scholar 

  4. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. In: Symposium on new directions and recent results in algorithms and complexity, page 441 (1976)

    Google Scholar 

  5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Approximation algorithms for NP-hard problems, pp. 46–93 (1996)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness I: Basic Results. SIAM J. Comput. 24(4), 873–921 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ ε in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations 43, 85–103 (1972)

    MathSciNet  Google Scholar 

  9. Korte, B., Schrader, R.: On the Existence of fast Approximation Schemes (1982)

    Google Scholar 

  10. Orlin, J.B., Schulz, A.S., Sengupta, S.: ε-optimization schemes and L-bit precision: alternative perspectives in combinatorial optimization (extended abstract). In: ACM Symposium on Theory of Computing, pp. 565–572 (2000)

    Google Scholar 

  11. Papadimitriou, C.H.: Euclidean TSP is NP-complete. Theoretical Computer Science 4, 237–244 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karger, D.R., Scott, J. (2008). Efficient Algorithms for Fixed-Precision Instances of Bin Packing and Euclidean TSP. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics