Sweeping Points | SpringerLink
Skip to main content

Abstract

Given a set of points in the plane, and a sweep-line as a tool, what is best way to move the points to a target point using a sequence of sweeps? In a sweep, the sweep-line is placed at a start position somewhere in the plane, then moved orthogonally and continuously to another parallel end position, and then lifted from the plane. The cost of a sequence of sweeps is the total length of the sweeps. Another parameter of interest is the number of sweeps. Four variants are discussed, depending whether the target is a hole or a pile, and whether the target is specified or freely selected by the algorithm. Here we present a ratio 4/π ≈ 1.27 approximation algorithm in the length measure, which performs at most four sweeps. We also prove that, for the two constrained variants, there are sets of n points for which any sequence of minimum cost requires 3n/2 − O(1) sweeps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Halperin, D., Kavraki, L., Latombe, J.-C.: Robotics. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1065–1093. Chapman & Hall, Boca Raton (2004)

    Google Scholar 

  2. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. In: Annals of Discrete Mathematics, vol. 53. North-Holland, Amsterdam (1992)

    Google Scholar 

  3. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of Mediterranean Electrotechnical Conference (MELECON 1983), Athens (1983)

    Google Scholar 

  4. Żyliński, P.: personal communication (June 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, A., Jiang, M. (2008). Sweeping Points. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics