Corruption and Recovery-Efficient Locally Decodable Codes | SpringerLink
Skip to main content

Abstract

A (q, δ, ε)-locally decodable code (LDC) C: {0,1}n →{0,1}m is an encoding from n-bit strings to m-bit strings such that each bit x k can be recovered with probability at least \(\frac{1}{2} + \epsilon\) from C(x) by a randomized algorithm that queries only q positions of C(x), even if up to δm positions of C(x) are corrupted. If C is a linear map, then the LDC is linear. We give improved constructions of LDCs in terms of the corruption parameter δ and recovery parameter ε. The key property of our LDCs is that they are non-linear, whereas all previous LDCs were linear.

  1. 1

    For any δ, ε ∈ [Ω(n − 1/2), O(1)], we give a family of (2, δ, ε)-LDCs with length . For linear (2, δ, ε)-LDCs, Obata has shown that \(m \geq \exp \left (\delta n \right )\). Thus, for small enough constants δ, ε, two-query non-linear LDCs are shorter than two-query linear LDCs.

  2. 1

    We improve the dependence on δ and ε of all constant-query LDCs by providing general transformations to non-linear LDCs. Taking Yekhanin’s linear (3, δ, 1/2 − 6δ)-LDCs with \(m = \exp \left (n^{1/t} \right )\) for any prime of the form 2t − 1, we obtain non-linear (3, δ, ε)-LDCs with .

Now consider a (q, δ, ε)-LDC C with a decoder that has n matchings M 1, ..., M n on the complete q-uniform hypergraph, whose vertices are identified with the positions of C(x). On input k ∈ [n] and received word y, the decoder chooses e = {a 1, ..., a q } ∈ M k uniformly at random and outputs \(\bigoplus_{j=1}^q y_{a_j}\). All known LDCs and ours have such a decoder, which we call a matching sum decoder. We show that if C is a two-query LDC with such a decoder, then \(m \geq \exp \left (\max(\delta, \epsilon)\delta n \right )\). Interestingly, our techniques used here can further improve the dependence on δ of Yekhanin’s three-query LDCs. Namely, if δ ≥ 1/12 then Yekhanin’s three-query LDCs become trivial (have recovery probability less than half), whereas we obtain three-query LDCs of length \(\exp \left (n^{1/t} \right )\) for any prime of the form 2t − 1 with non-trivial recovery probability for any δ< 1/6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. Theory 42, 1710–1722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: STOC (2000)

    Google Scholar 

  3. Trevisan, L.: Some applications of coding theory in computational complexity. Quaderni di Matematica 13, 347–424 (2004)

    MathSciNet  Google Scholar 

  4. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. Computational Complexity 15(3), 263–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Obata, K.: Optimal lower bounds for 2-query locally decodable linear codes. In: Rolim, J., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 39–50. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Shiowattana, D., Lokam, S.V.: An optimal lower bound for 2-query locally decodable linear codes. Inf. Process. Lett. 97(6), 244–250 (2006)

    Article  MathSciNet  Google Scholar 

  8. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci. 69(3), 395–420 (2004)

    Article  MATH  Google Scholar 

  9. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. J. ACM 55(5) (2008)

    Google Scholar 

  10. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the \(\textrm{O}(n^{\frac{1}{2k-1}})\) barrier for information-theoretic private information retrieval. In: FOCS (2002)

    Google Scholar 

  11. Chor, B., Goldreich, O., Hästad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem of t-resilient functions. In: FOCS, pp. 396–407 (1985)

    Google Scholar 

  12. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  Google Scholar 

  13. Stinson, D.R., Massey, J.L.: An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions. J. Cryptology 8(3), 167–173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: IEEE Conference on Computational Complexity, pp. 188–202 (2001)

    Google Scholar 

  15. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodruff, D. (2008). Corruption and Recovery-Efficient Locally Decodable Codes. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics