Abstract
In previous studies, the efficiency of the Half-Sweep Multigrid (HSMG) method has been shown to be very fast as compared with the standard multigrid method. This is due to its ability to reduce computational complexity of the standard method. In this paper, the primary goal is to propose the Half-Sweep Algebraic Multigrid (HSAMG) method using the HSCN finite difference scheme for solving two-dimensional diffusion equations. The formulation of the HSAMG scheme is derived by borrowing the concept of the HSMG method. Results on some numerical experiments conducted show that the HSAMG method is superior to the standard algebraic method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdullah, A. R.: The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson Solver. International Journal Computer Mathematics, 38, 61–70 (1991)
Ali, N. H. M, Yunus, Y., Othman, M.: A New Nine Point Multigrid V-Cycle Algorithm. Sains Malaysiana, 31, 135–147 (2002)
Brandt, A.: Multi-Level Adaptive Technique (MLAT) for fast numerical solution to boundary value problems. Proceeding of the Third International Conference on Numerical Methods in Fluid Mechanics, 18, 82–89 (1973)
Brandt, A.: Guide to multigrid development. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 312–320 (1982)
Brandt, A.: Algebraic multigrid theory: The symmetric case. Applied Mathematics and Computation, 19, 23–56 (1986)
Brandt, A., Greenwald, J.: Parabolic multigrid revisited. International Series of Numerical Mathematics, 98, 143–154 (1991)
Briggs, W. L.: A multigrid tutorial. Pennsylvania: Lancaster Press. (1987)
Chang, Q., Wong, Y. S., Fu, H.: On the Algebraic Multigrid method. Journal of Computational Physics, 125, 279-292 (1996)
Fletcher, C. A. J.: The Galerkin method: An introduction. In. Noye, J. (pnyt.). Numerical Simulation of Fluid Motion, North-Holland Publishing Company, Amsterdam 113–170 (1978)
Fletcher, C. A. J.: Computational Galerkin method. Springer Series in Computational Physics. Springer-Verlag, New York (1984)
Gupta, M. M., Kouatchou, J., Zhang, J.: A Compact Multigrid solver for convection-diffusion equations. Journal of Computational Physics, 132(1), 166–172 (1997)
Gupta, M. M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretizations for multigrid Poisson solvers. Journal of Computational Physics, 132(2), 226–232 (1997)
Hackbusch, W.: Introduction to Multi-grid methods for the numerical solution of boundary value problems. In. Essers, J.A. Computational Methods for Turbulent, Transonic and Viscous Flows: Springer-Verlag, Berlin, 45–92 (1983)
Hackbusch, W.: Parabolic Multigrid. Computing Methods in Applied Sciences and Engineering, VI. North-Holland, 189–197 (1984)
Hackbusch, W.: Multi-grid methods and applications. Springer Series in Computational Mathematics 4. Springer-Verlag, Berlin (1985)
Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer-Verlag, New York (1995)
Ibrahim, A., Abdullah, A. R.: Solving the two-dimensional diffusion equation by the four point explicit decoupled group (EDG) iterative method. International Journal Computer Mathematics, 58, 253–256 (1995)
Lewis, P. E., Ward, J. P.: The Finite Element Method: Principles and Applications. Addison-Wesley Publishing Company, Wokingham (1991)
Othman, M., Abdullah, A. R.: The Halfsweeps Multigrid method as a fast Multigrid Poisson solver. International Journal Computer Mathematics, 69, 319–329 (1998)
Othman, M., Sulaiman, J., Abdullah, A. R.: A parallel Halfsweep Multigrid algorithm on the Shared Memory Multiprocessors. Malaysian Journal of Computer Science, 13(2), 1–6 (2000)
Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 1–176 (1982)
Sulaiman, J., Hasan, M. K., Othman, M.: The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) method for diffusion equations. LNCS 3314, Springer-Verlag, Berlin 57–63 (2004)
Sulaiman, J., Othman, M., Hasan, M. K.: Quarter-Sweep Iterative Alternating Decomposition Explicit algorithm applied to diffusion equations. Intern. Journal of Computer Mathematics, 81, 1559-1565 (2004)
Vandewalle, S., Piessens, R.: Multigrid waveform relaxation for solving parabolic partial differential equations. International Series of Numerical Mathematics, 98, 377–388 (1991)
Vichnevetsky, R.: Computer Methods for Partial Differential Equations, Vol I. New Jersey: Prentice-Hall (1981)
Wesseling, P.: An introduction to Multigrid methods. John Wiley and Son, New York (1992)
Yousif, W. S., Evans, D. J.: Explicit De-coupled Group Iterative Methods and Their Parallel Implementations, Parallel Algorithms and Applications, 7, 53–71 (1995)
Zienkiewicz, O. C.: Why finite elements? In. Gallagher, R. H., Oden, J. T., Taylor, C., Zienkiewicz, O. C. (Eds). Finite Elements In Fluids-Volume, John Wiley & Sons, London 1, 1–23 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sulaiman, J., Othman, M., Hasan, M.K. (2008). Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79409-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-79409-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79408-0
Online ISBN: 978-3-540-79409-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)