Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations | SpringerLink
Skip to main content

Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes

Abstract

In previous studies, the efficiency of the Half-Sweep Multigrid (HSMG) method has been shown to be very fast as compared with the standard multigrid method. This is due to its ability to reduce computational complexity of the standard method. In this paper, the primary goal is to propose the Half-Sweep Algebraic Multigrid (HSAMG) method using the HSCN finite difference scheme for solving two-dimensional diffusion equations. The formulation of the HSAMG scheme is derived by borrowing the concept of the HSMG method. Results on some numerical experiments conducted show that the HSAMG method is superior to the standard algebraic method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, A. R.: The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson Solver. International Journal Computer Mathematics, 38, 61–70 (1991)

    Article  MATH  Google Scholar 

  2. Ali, N. H. M, Yunus, Y., Othman, M.: A New Nine Point Multigrid V-Cycle Algorithm. Sains Malaysiana, 31, 135–147 (2002)

    Google Scholar 

  3. Brandt, A.: Multi-Level Adaptive Technique (MLAT) for fast numerical solution to boundary value problems. Proceeding of the Third International Conference on Numerical Methods in Fluid Mechanics, 18, 82–89 (1973)

    Article  Google Scholar 

  4. Brandt, A.: Guide to multigrid development. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 312–320 (1982)

    Google Scholar 

  5. Brandt, A.: Algebraic multigrid theory: The symmetric case. Applied Mathematics and Computation, 19, 23–56 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brandt, A., Greenwald, J.: Parabolic multigrid revisited. International Series of Numerical Mathematics, 98, 143–154 (1991)

    MathSciNet  Google Scholar 

  7. Briggs, W. L.: A multigrid tutorial. Pennsylvania: Lancaster Press. (1987)

    MATH  Google Scholar 

  8. Chang, Q., Wong, Y. S., Fu, H.: On the Algebraic Multigrid method. Journal of Computational Physics, 125, 279-292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fletcher, C. A. J.: The Galerkin method: An introduction. In. Noye, J. (pnyt.). Numerical Simulation of Fluid Motion, North-Holland Publishing Company, Amsterdam 113–170 (1978)

    Google Scholar 

  10. Fletcher, C. A. J.: Computational Galerkin method. Springer Series in Computational Physics. Springer-Verlag, New York (1984)

    Google Scholar 

  11. Gupta, M. M., Kouatchou, J., Zhang, J.: A Compact Multigrid solver for convection-diffusion equations. Journal of Computational Physics, 132(1), 166–172 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gupta, M. M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretizations for multigrid Poisson solvers. Journal of Computational Physics, 132(2), 226–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hackbusch, W.: Introduction to Multi-grid methods for the numerical solution of boundary value problems. In. Essers, J.A. Computational Methods for Turbulent, Transonic and Viscous Flows: Springer-Verlag, Berlin, 45–92 (1983)

    Google Scholar 

  14. Hackbusch, W.: Parabolic Multigrid. Computing Methods in Applied Sciences and Engineering, VI. North-Holland, 189–197 (1984)

    Google Scholar 

  15. Hackbusch, W.: Multi-grid methods and applications. Springer Series in Computational Mathematics 4. Springer-Verlag, Berlin (1985)

    Google Scholar 

  16. Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer-Verlag, New York (1995)

    Google Scholar 

  17. Ibrahim, A., Abdullah, A. R.: Solving the two-dimensional diffusion equation by the four point explicit decoupled group (EDG) iterative method. International Journal Computer Mathematics, 58, 253–256 (1995)

    Article  MATH  Google Scholar 

  18. Lewis, P. E., Ward, J. P.: The Finite Element Method: Principles and Applications. Addison-Wesley Publishing Company, Wokingham (1991)

    MATH  Google Scholar 

  19. Othman, M., Abdullah, A. R.: The Halfsweeps Multigrid method as a fast Multigrid Poisson solver. International Journal Computer Mathematics, 69, 319–329 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Othman, M., Sulaiman, J., Abdullah, A. R.: A parallel Halfsweep Multigrid algorithm on the Shared Memory Multiprocessors. Malaysian Journal of Computer Science, 13(2), 1–6 (2000)

    Google Scholar 

  21. Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 1–176 (1982)

    Google Scholar 

  22. Sulaiman, J., Hasan, M. K., Othman, M.: The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) method for diffusion equations. LNCS 3314, Springer-Verlag, Berlin 57–63 (2004)

    Google Scholar 

  23. Sulaiman, J., Othman, M., Hasan, M. K.: Quarter-Sweep Iterative Alternating Decomposition Explicit algorithm applied to diffusion equations. Intern. Journal of Computer Mathematics, 81, 1559-1565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vandewalle, S., Piessens, R.: Multigrid waveform relaxation for solving parabolic partial differential equations. International Series of Numerical Mathematics, 98, 377–388 (1991)

    MathSciNet  Google Scholar 

  25. Vichnevetsky, R.: Computer Methods for Partial Differential Equations, Vol I. New Jersey: Prentice-Hall (1981)

    Google Scholar 

  26. Wesseling, P.: An introduction to Multigrid methods. John Wiley and Son, New York (1992)

    MATH  Google Scholar 

  27. Yousif, W. S., Evans, D. J.: Explicit De-coupled Group Iterative Methods and Their Parallel Implementations, Parallel Algorithms and Applications, 7, 53–71 (1995)

    MATH  Google Scholar 

  28. Zienkiewicz, O. C.: Why finite elements? In. Gallagher, R. H., Oden, J. T., Taylor, C., Zienkiewicz, O. C. (Eds). Finite Elements In Fluids-Volume, John Wiley & Sons, London 1, 1–23 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sulaiman, J., Othman, M., Hasan, M.K. (2008). Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79409-7_40

Download citation

Publish with us

Policies and ethics