Summary
We focus in this paper on approximate reasoning in a symbolic framework, and more precisely in multi-valued logic. Approximate reasoning is based on a generalization of Modus Ponens, known as Generalized Modus Ponens (GMP). Its principle is that from an observation different but approximately equal to the rule premise, we can deduce a fact approximately equal to the rule conclusion. We propose a generalization of the approximate reasoning axiomatic introduced by Fukami, and we show the weakness of GMP approaches in the multi-valued context towards this axiomatic. Moreover, we propose two rules of symbolic GMP that check the axiomatic. One is based on the implication operator and the second on linguistic modifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akdag, H., De Glas, M., Pacholczyk, D.: A qualitative theory of uncertainty. Fundamenta Informaticae 17, 333–362 (1992)
Akdag, H., Mellouli, N., Borgi, A.: A symbolic approach of linguistic modifiers. In: Information Processing and Management of Uncertainty in Knowledge- Based Systems, Madrid, pp. 1713–1719 (2000)
Akdag, H., Truck, I., Borgi, A., Mellouli, N.: Linguistic Modifers in a Symbolic Framework. I. J. of Uncertainty. Fuzziness and Knowledge-Based Systems 9(suppl.), 49–61 (2001)
Baldwin, J.F., Pilsworth, B.W.: Axiomatic approach to implication for approximate reasoning with fuzzy logic. Fuzzy sets and systems 3, 193–219 (1980)
Bouchon-Meunier, B.: Stability of linguistic modifiers compatible with a fuzzy logic. In: Yager, R.R., Saitta, L., Bouchon, B. (eds.) IPMU 1988. LNCS, vol. 313, pp. 63–70. Springer, Heidelberg (1988)
Bouchon-Meunier, B.: On the management of uncertainty in knowledgebased system. In: Holman, A.G., Kent, A., Williams, G.J. (eds.) Encyclopedia of Computer Science and Technology, Marcel Dekker (1989)
Bouchon-Meunier, B., Delechamp, J., Marsala, C., Rifqi, M.: Several forms of fuzzy analogical reasoning. In: FUZZ-IEEE 1997, Barcelona, pp. 45–50 (1997)
Bouchon, B., Jia, Y.: Gradual change of linguistic category by means of modifiers. In: Proc. 3rd International Conference IPMU, Paris, pp. 242–244 (1990)
Bouchon-Meunier, B., Kreinovich, V.: Fuzzy Modus Ponens as a Calculus of Logical Modifiers: Towards Zadeh’s Vision of Implication Calculus. Information Sciences 116, 219–227 (1999)
Cornelis, C., Kerre, E.E.: Inclusion-Based Approximate Reasoning. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 221–230. Springer, Heidelberg (2001)
Di Lascio, L., Gisolfi, A., Loia, V.: A New Model for Linguistic Modifiers. International Journal of Approximate Reasoning 15, 25–47 (1996)
Di Lascio, L., Gisolfi, A., Cortés, U.: Linguistic hedges and the generalized modus ponens. International Journal of Intelligent Systems 14, 981–993 (1999)
El-Sayed, M., Pacholczyk, D.: Towards a Symbolic Interpretation of Approximate Reasoning. Electr. Notes Theor. Comput. Sci. 82, 108–119 (2003)
Fukami, S., Mizumoto, M., Tanaka, K.: Some considerations of fuzzy conditional inference. Fuzzy sets and systems 4, 243–273 (1980)
Ginsberg, M.L.: Multivalued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265–316 (1988)
Khoukhi, F.: Approche logico-symbolique dans le traitement des connaissances incertaines et imprécises dans les systèmes à base de connaissances. PhD thesis, Université de Reims, France (1996)
Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning I-II-III. Information Sciences 8, 199–249; 8, 301–357; 9, 43–80 (1975)
Zadeh, L.: A theory of approximate reasoning. Machine Intelligence 9, 149–194 (1979)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Borgi, A., Kacem, S.B.H., Ghedira, K. (2008). Approximate Reasoning in a Symbolic Multi-valued Framework. In: Lee, R., Kim, HK. (eds) Computer and Information Science. Studies in Computational Intelligence, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79187-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-79187-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79186-7
Online ISBN: 978-3-540-79187-4
eBook Packages: EngineeringEngineering (R0)