Abstract
We describe a simple combinatorial approximation algorithm for finding a shortest (simple) cycle in an undirected graph. For an undirected graph G of unknown girth k, our algorithm returns with high probability a cycle of length at most 2k for even k and 2k + 2 for odd k, in time \(\mathcal{O}(n^{\frac 3 2} \sqrt {\log n }).\) Thus, in general, it yields a \(2{\frac 23}\) approximation. We study also the problem of finding a simple cycle of minimum total weight in an undirected graph with nonnegative edge weights. We present a simple combinatorial 2-approximation algorithm for a minimum weight (simple) cycle in an undirected graph with nonnegative integer edge weights in the range { 1,2,...,M}. This algorithm runs in time \(\mathcal{O}(n^2\log n \log M).\)
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast Estimation of Diameter and Shortest Paths (Without Matrix Multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)
Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)
Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)
Baswana, S., Goyal, V., Sen, S.: All-Pairs Nearly 2-Approximate Shortest-Paths in \(\mathcal{O}(n^2 \textnormal{polylog} ~n)\) Time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 666–679. Springer, Heidelberg (2005)
Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. FOCS 2006, pp. 591–602. IEEE, Los Alamitos (2006)
Berman, P., Kasiviswanathan, S.P.: Faster approximation of distances in graphs. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 541–552. Springer, Heidelberg (2007)
Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)
Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algorithms 48, 239–256 (2003)
Chan, T.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proc. STOC 2007, pp. 590–598 (2007)
Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38(2), 335–353 (2001)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990)
Czumaj, A., Lingas, A.: Finding a heaviest triangle is not harder than matrix multiplication. In: Proc. SODA 2007, pp. 986–994 (2007)
Diestel, R.: Graph Theory. Springer, Heidelberg (2000)
Djidjev, H.: Computing the Girth of a Planar Graph. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 821–831. Springer, Heidelberg (2000)
Dor, D., Halperin, S., Zwick, U.: All Pairs Almost Shortest Paths. SIAM J. Computing 29, 1740–1759 (2000)
Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM Journal on Computing 16(2), 358–366 (1987)
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)
Karger, D.R., Koller, D., Phillips, S.J.: Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths. In: Proc. FOCS 1991, pp. 560–568 (1991)
Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for Minimum Cycle Basis of graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)
Kavitha, T., Mehlhorn, K., Michail, D.: New Approximation Algorithms for Minimum Cycle Bases of Graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 512–523. Springer, Heidelberg (2007)
Krivelevich, M., Nutov, Z., Yuster, R.: Approximation Algorithms for Cycle Packing Problems. In: Proc. SODA 2005, pp. 556–561 (2005)
Salavatipour, M.R., Verstraete, J.: Disjoint Cycles: Integrality Gap, Hardness, and Approximation. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 51–65. Springer, Heidelberg (2005)
Schank, T., Wagner, D.: Finding, Counting and Listing all Triangles in Large Graphs, An Experimental Study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 606–609. Springer, Heidelberg (2005)
Takaoka, T.: A Faster Algorithm for the All-Pairs Shortest Path Problem and Its Application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 278–289. Springer, Heidelberg (2004)
Thorup, M., Zwick, U.: Approximate distance oracles. In: Proc. STOC 2001, pp. 183–192 (2001)
Vassilevska, V., Williams, R., Yuster, R.: Finding the smallest H-subgraph in real weighted graphs and related problems. In: Proc. ICALP 2006, pp. 262–273 (2006)
Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n 3 − δ time, with applications. In: Proc. STOC 2006, pp. 225–231 (2006)
Yuster, R., Zwick, U.: Finding Even Cycles Even Faster. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 532–543. Springer, Heidelberg (1994)
Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular matrix multiplication and dynamic programming. In: Proc. SODA 2004, pp. 254–260 (2004)
Zwick, U.: All pairs shortest paths using bridging rectangular matrix multiplication. Journal of the ACM 49(3), 289–317 (2002)
Zwick, U.: Exact and Approximate Distances in Graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lingas, A., Lundell, EM. (2008). Efficient Approximation Algorithms for Shortest Cycles in Undirected Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)