Abstract
Most deterministic algorithms for NP-hard problems are splitting algorithms: They split a problem instance into several smaller ones, which they solve recursively. Often, the algorithm has a choice between several splittings. For 3-SAT, we show that choosing wisely which splitting to apply, one can avoid encountering too many worst-case instances. This improves the currently best known deterministic worst case running time for 3-SAT from \(\mathcal{O}(1.473^n)\) to \(\mathcal{O}(1.465^n)\), n being the number of variables in the input formula.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In: Proc. 36th Symp. Foundations of Computer Science, October 1995, pp. 444–453. IEEE, Los Alamitos (1995)
Brueggemann, T., Kern, W.: An improved local search algorithm for 3-SAT. Memorandum 1709, Department of Applied Mathematics, University of Twente, Enschede (2004)
Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, O., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. ACM 5, 394–397 (1962)
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc. Comput. Mach. 7, 201–215 (1960)
Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Applied Mathematics 10, 287–295 (1985)
Rolf, D.: Improved bound for the PPSZ/Schöning-algorithm for 3-SAT. Electronic Colloquium on Computational Complexity (ECCC) 159 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scheder, D. (2008). Guided Search and a Faster Deterministic Algorithm for 3-SAT. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)