Abstract
Giving a partial solution to a problem of S. Fekete and G.J. Woeginger [3,4] we show that given a finite set X of points in the plane, it is possible to arrange them on a polygonal path (with the vertex set X) so that every angle on the polygonal path is at least π/9. According to a conjecture of Fekete and Woeginger, π/9 can be replaced by π/6. Previously, the result has not been known with any positive constant.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Pór, A., Santos, F., Speckmann, B., Vogtenhuber, B.: Maximizing Maximal Angles for Plane Straight-Line Graphs. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 458–469. Springer, Heidelberg (2007)
Bárány, I., Pór, A., Valtr, P.: Paths with no small angles (manuscript in preparation, 2007)
Fekete, S.: Geometry and the Travelling Salesman Problem, Ph.D. thesis, University of Waterloo (1992)
Fekete, S., Woeginger, G.J.: Angle-restricted tours in the plane. Comput. Geom.: Theory and Appl. 8, 195–218 (1997)
Kirkpatrick, Seidel, R.: The ultimate planar convex hull algorithm. SIAM J. Computing 15, 286–297 (1986)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bárány, I., Pór, A., Valtr, P. (2008). Paths with no Small Angles. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)