Abstract
A 2-subcolouring of a graph is a partition of the vertices into two subsets, each inducing a P 3-free graph, i.e., a disjoint union of cliques. We give the first polynomial time algorithm to test whether a chordal graph has a 2-subcolouring. This solves (for two colours) an open problem of Broersma, Fomin, Nešetřil, and Woeginger, who gave an O(n 5) time algorithm for interval graphs. Our algorithm for the larger class of chordal graphs has complexity only O(n 3).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic number of a graph. Discrete Mathematics 74, 33–49 (1989)
Achlioptas, D.: The complexity of G-free colorability. Discrete Mathematics 165/166, 21–30 (1997)
Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcoloring: Complexity and algorithms. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 154–165. Springer, Heidelberg (2001)
Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph. Discrete Mathematics 272, 139–154 (2003)
Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.J.: More about subcolorings. Computing 69, 187–203 (2002)
Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into independent sets and cliques. Discrete Applied Mathematics 141, 185–194 (2004)
Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of chordal graphs. Theoretical Computer Science 349, 52–66 (2005)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stacho, J. (2008). On 2-Subcolourings of Chordal Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)