Pseudorandom Graphs from Elliptic Curves | SpringerLink
Skip to main content

Pseudorandom Graphs from Elliptic Curves

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

  • 1733 Accesses

Abstract

Most of the constructions of pseudorandom graphs are based on additive or multiplicative groups of elements of finite fields. As a result the number of vertices of such graphs is limited to values of prime powers or some simple polynomial expressions involving prime powers. We show that elliptic curves over finite fields lead to new constructions of pseudorandom graphs with a new series of parameters. Accordingly, the number of vertices of such graphs can take most of positive integer values (in fact, any positive value under some classical conjectures about the gaps between prime numbers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: Variations and applications. J. Combin. Theory, Ser. B 76, 280–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, F.R.K.: Spectral graph theory. Amer. Math. Soc., Providence, RI (1997)

    MATH  Google Scholar 

  3. Cramer, H.: On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2, 23–46 (1936)

    MATH  Google Scholar 

  4. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)

    Article  MathSciNet  Google Scholar 

  5. Granville, A., Shparlinski, I.E., Zaharescu, A.: On the distribution of rational functions along a curve over IF p and residue races. J. Number Theory 112, 216–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iwaniec, H., Kowalski, E.: Analytic number theory. Amer. Math. Soc., Providence, RI (2004)

    MATH  Google Scholar 

  8. Kohel, D.R., Shparlinski, I.E.: Exponential sums and group generators for elliptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 395–404. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: More Sets, Graphs and Numbers. Bolyai Society Mathem. Studies 15, pp. 199–262. Springer, Heidelberg (2006)

    Google Scholar 

  10. Matomäki, K.: Large differences between consecutive primes. Quart. J. Math. 58, 489–518 (2007)

    Article  MATH  Google Scholar 

  11. Murty, M.R.: Ramanujan graphs. J. Ramanujan Math. Soc. 18, 1–20 (2003)

    MathSciNet  Google Scholar 

  12. Peck, A.S.: Differences between consecutive primes. Proc. London Math. Soc. 76, 33–69 (1998)

    Article  MathSciNet  Google Scholar 

  13. Shparlinski, I.E.: Bilinear character sums over elliptic curves. Finite Fields and Their Appl. (to appear)

    Google Scholar 

  14. Silverman, J.H.: The arithmetic of elliptic curves. Springer, Berlin (1995)

    Google Scholar 

  15. Vajaitu, M., Zaharescu, A.: Distribution of values of rational maps on the IF p -points on an affine curve. Monatsh. Math. 136, 81–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

    Google Scholar 

  17. Zémor, G.: Hash functions and Cayley graphs. Designs, Codes and Cryptography 4, 381–394 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shparlinski, I.E. (2008). Pseudorandom Graphs from Elliptic Curves. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics