Abstract
This paper presents an algorithm to triangulate polygons optimally using order-k Delaunay triangulations, for a number of quality measures. The algorithm uses properties of higher order Delaunay triangulations to improve the O(n 3) running time required for normal triangulations to O(k 2 n logk + knlogn) expected time, where n is the number of vertices of the polygon. An extension to polygons with points inside is also presented, allowing to compute an optimal triangulation of a polygon with h ≥ 1 components inside in O(knlogn) + O(k)h + 2 n expected time. Furthermore, through experimental results we show that, in practice, it can be used to triangulate point sets optimally for small values of k. This represents the first practical result on optimization of higher order Delaunay triangulations for k > 1.
This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under the project GOGO.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benkert, M., Gudmundsson, J., Haverkort, H.J., Wolff, A.: Constructing interference-minimal networks. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 166–176. Springer, Heidelberg (2006)
Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., Tan, T.S.: Edge insertion for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)
Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, Lecture Notes Series on Computing, 2nd edn. vol. 4, pp. 47–123. World Scientific, Singapore (1995)
Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39(1), 1–54 (1992)
Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
De Floriani, L., Falcidieno, B., Pienovi, C.: Delaunay-based representation of surfaces defined over arbitrarily shaped domains. Comput. Vision Graph. Image Process. 32, 127–140 (1985)
de Kok, T., van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-order Delaunay triangulations. Comp. Geom. Theory Appl. 36, 52–65 (2007)
Edelsbrunner, H., Tan, T.S.: A quadratic time algorithm for the minmax length triangulation. SIAM J. Comput. 22, 527–551 (1993)
Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time. J. ACM 31(3), 538–544 (1984)
Gilbert, P.D.: New results in planar triangulations. Report R-850, Coordinated Sci. Lab., Univ. Illinois, Urbana, IL (1979)
Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23, 85–98 (2002)
Gudmundsson, J., Haverkort, H., van Kreveld, M.: Constrained higher order Delaunay triangulations. Comput. Geom. Theory Appl. 30, 271–277 (2005)
Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take a walk. J. Algorithms 18, 403–431 (1995)
Keil, J.M., Vassilev, T.S.: Algorithms for optimal area triangulations of a convex polygon. Comput. Geom. Theory Appl. 35(3), 173–187 (2006)
Klincsek, G.T.: Minimal triangulations of polygonal domains. Discrete Math. 9, 121–123 (1980)
van Kreveld, M., Löffler, M., Silveira, R.I.: Optimization for first order Delaunay triangulations. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 175–187. Springer, Heidelberg (2007)
Levcopoulos, C., Krznaric, D.: The greedy triangulation can be computed from the Delaunay triangulation in linear time. Comput. Geom. Theory Appl. 14, 197–220 (1999)
Mark, D.: Network models in geomorphology. In: Anderson, M.G. (ed.) Modelling Geomorphological Systems, ch. 4, pp. 73–97. John Wiley & Sons, Chichester (1988)
Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)
Neamtu, M.: Delaunay configurations and multivariate splines: a generalization of a result of B. N. Delaunay. Trans. Amer. Math. Soc. 359(7), 2993–3004 (2007)
Pebay, P.P., Baker, T.J.: A comparison of triangle quality measures. In: Proceedings of the 10th International Meshing Roundtable, pp. 327–340 (2001)
Silveira, R.I., van Kreveld, M.: Towards a Definition of Higher Order Constrained Delaunay Triangulations. In: Proceedings of the 19th Annual Canadian Conference on Computational Geometry (CCCG 2007), pp. 161–164 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Silveira, R.I., van Kreveld, M. (2008). Optimal Higher Order Delaunay Triangulations of Polygons. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)