Contour Matching for Fish Species Recognition and Migration Monitoring | SpringerLink
Skip to main content

Contour Matching for Fish Species Recognition and Migration Monitoring

  • Chapter
Applications of Computational Intelligence in Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 122))

Summary

A variety of matching and classification techniques have been employed in applications requiring pattern recognition. In this chapter we introduce a simple and accurate real-time contour matching technique specifically for applications involving fish species recognition and migration monitoring. We describe FishID, a prototype vision system that employs a software implementation of our newly developed contour matching algorithms. We discuss the challenges involved in the design of this system, both hardware and software, and we present results from a field test of the system at Prosser Dam in Prosser, Washington. In tests with up to four distinct species, the algorithm correctly determines the species with greater than 90 percent accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin EM, Chew LP, Huttenlocher DP, Kedem K, Mitchell JSB (1991) An efficient computable metric for comparing polygon shapes. IEEE Trans. On Pattern Analysis and Machine Intelligence 13:209–216

    Article  Google Scholar 

  2. Bendall C, Hiebert SD, Mueller G (1999) Experiments in in situ fish recognition systems using fish spectral and spatial signatures. US Department of the Interior, US Geological Survey

    Google Scholar 

  3. Bogert GM, Healy MJ, Tukey JW (1963) The quefrency analysis of time series for echoes: cepstrum and saphe cracking. In: Rosenblatt M (ed) Proc. of a Symposium on Time Series Analysis, pp 209–243. John Wiley, New York

    Google Scholar 

  4. Chambah M, Semani D, Renouf A, Courtellemont P, Rizzi A (2004) Underwater color constancy: enhancement of automatic live fish recognition. Proceedings of the SPIE 5293:157–168

    Article  Google Scholar 

  5. Chan D, Hockaday S, Tillett RD, Ross LG (1999) A trainable n-tuple pattern classifier and its application for monitoring fish underwater. In: Proc. Seventh Int. Conf. on Image Processing And Its Applications, vol 1, pp 255–259

    Google Scholar 

  6. Childers DG, Skinner DP, Kemerait RC (1977) The cepstrum: A guide to processing. Proceedings of the IEEE, 65: 1428–1443

    Article  Google Scholar 

  7. Cunningham DJ, Anderson WH, Anthony RM (2006) An image-processing program for automated counting. Wildlife Society Bulletin 24:345–346

    Google Scholar 

  8. Dauble DD, Mueller RP (2000) Upstream passage monitoring: difficulties in estimating survival for adult Chinook salmon in the Columbia and Snake Rivers. Fisheries 25:24–34

    Article  Google Scholar 

  9. Dudgeon D (1977) The computation of two-dimensional cepstra. IEEE Trans. Acoustics, Speech, and Signal Processing 25:276–484

    Article  Google Scholar 

  10. Gamage LB, de Silva CW (1990) Use of image processing for the measurement of orientation with application to automated fish processing. In: Proc. 16th Annual Conf. IEEE Industrial Electronics Society, pp 482–487

    Google Scholar 

  11. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall Inc., Upper Saddle River, New Jersey

    Google Scholar 

  12. Gregory S, Li H, Li J (2002) The conceptual basis for ecological responses to dam removal. BioScience 52:713–723

    Article  Google Scholar 

  13. Hiebert S, Helfrich LA, Weigmann DL, Liston C (2000) Anadromous salmonid passage and video image quality under infrared and visible light at Prosser Dam, Yakima River, Washington. North American Journal of Fisheries Management 20:827–832

    Article  Google Scholar 

  14. Huettmann F (1993) Use of a video camera and digitized video pictures in wildlife biology. Proc. of XXI IUGB (Int. Union of Game Biologists) Congress, pp 187–191

    Google Scholar 

  15. Huettmann F (1995) Recognizing animal species with Artificial Intelligence (AI) software on digitized video pictures; an application using roe deer and red fox. Proc. of XXII IUGB (Int. Union of Game Biologists) Congress, pp 129–138

    Google Scholar 

  16. Kemerait RC, Childers DG (1972) Signal detection and extraction by cepstrum techniques. IEEE Trans. Information Theory 18:745–759

    Article  Google Scholar 

  17. Laliberte AS, Ripple WJ (2003) Automated wildlife counts from remotely sensed imagery. Wildlife Society Bulletin 31:362–371

    Google Scholar 

  18. Latecki LJ, Lakämper R (2001) Shape description and search for similar objects in image databases. In: State-of-the-Art in Content-Based Image and Video Retrieval, pp 69–95, Kluwer, Deventer, The Netherlands

    Google Scholar 

  19. Latecki LJ, Lakämper R (2002) Application of planar shape comparison to object retrieval in image databases. Pattern Recognition 35:15–29

    Article  MATH  Google Scholar 

  20. Lee DJ, Bates D, Dromey C, Xu X (2003) A vision system performing lip shape analysis for speech pathology research. In: Proc. 29th Annual Conf. IEEE Industrial Electronics Society, pp 1086–1091

    Google Scholar 

  21. Lee DJ, Bates D, Dromey C, Xu X, Antani S (2003) An imaging system correlating lip shapes with tongue contact patterns for speech pathology research. In: Proc. 16th IEEE Symposium on Computer-Based Medical Systems, pp 307–313

    Google Scholar 

  22. Lee DJ, Krile TF, Mitra S (1988) Power spectrum and cepstrum techniques applied to image registration. Applied Optics 27:1099–1106

    Article  Google Scholar 

  23. Lee DJ, Mitra S, Krile TF (1988) Noise tolerance of power cepstra and phase correlation in image registration. Optical Society of America Meeting, Santa Clara, California

    Google Scholar 

  24. Lee DJ, Mitra S, Krile TF (1989) Analysis of sequential complex images using feature extraction and 2-D cepstrum techniques. Journal of Optical Society of America 6:863–871

    Article  Google Scholar 

  25. Lee DJ, Mitra S, Krile TF (1990) Accuracy of depth information from cepstrumdisparities of a sequence of 2-D projections. Proceedings of the SPIE 1192:778–788

    Google Scholar 

  26. Lee DJ, Redd S, Schoenberger R, Xu X, Zhan P (2003) An automated fish species classification and migration monitoring system. In: Proc. 29th Annual Conf. IEEE Industrial Electronics Society, pp 1080–1085

    Google Scholar 

  27. Lee DJ, Schoenberger RB, Shiozawa DK, Xu XQ, Zhan P (2004) Contour matching for a fish recognition and migration monitoring system. Proceedings of the SPIE 5606:37–48

    Article  Google Scholar 

  28. Lee DJ, Zhan P, Shiozawa DK, Schoenberger R (2004) An automated fish recognition and migration monitoring system for biology research. Annual Meeting of the Western Division of the American Fisheries Society, Salt Lake City, UT, March

    Google Scholar 

  29. Lichatowich JA (2001) Salmon without rivers: a history of the pacific salmon crisis. Island Press, Washington D.C.

    Google Scholar 

  30. Menard M, Loonis P, Shahin A (1997) A priori minimization in pattern recognition: Application to industrial fish sorting and face recognition by computer vision. In: Proc. Sixth IEEE Int. Conf. on Fuzzy Systems, vol 2, pp 1045–1050

    Google Scholar 

  31. Mitra S, Lee DJ, Krile TF (1990) 3-D representation from time-sequenced biomedical images using 2-D cepstrum. In: Proc. IEEE Conference on Visualization in Biomedical Computing, pp 401–408

    Google Scholar 

  32. Naiberg A, Little JJ (1994) A unified recognition and stereo vision system for size assessment of fish. In: Proc. Second IEEE Workshop on Applications of Computer Vision, pp 2–9

    Google Scholar 

  33. Nogita S, Baba K, Yahagi H, Watanabe S, Mori S (1988) Acute toxicant warning system based on a fish movement analysis by use of AI concept. In: Proc. Int. Workshop on Artificial Intelligence for Industrial Applications, pp 273–276

    Google Scholar 

  34. Semani D, Bouwmans T, Frélicot C, Courtellemont P (2002) Automatic fish recognition in interactive live video. In: Proc. Int. Workshop on IVRCIA, The 6th World Multi-Conference on Systemics, Cybernetics and Informatics, pp 14–18

    Google Scholar 

  35. Semani D, Saint-Jean C, Frélicot C, Bouwmans T, Courtellemont P (2002) Alive fishes species characterization from video sequences. In: Proc. Joint IAPR Int. Workshop on Structural, and Statistical Pattern Recognition, pp 689–698

    Google Scholar 

  36. Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. PWS Publishing, Pacific Grove, California

    Google Scholar 

  37. Strachan NJC (1993) Recognition of fish species by colour and shape. Image and Vision Computing 11:2–10

    Article  Google Scholar 

  38. Strachan NJC, Nesvadba P, Allen AR (1990) Fish species recognition by shape analysis of images. Pattern Recognition 23:539–544

    Article  Google Scholar 

  39. Strout C, Shiozawa DK, Lee DJ (2004) Computerized fish imaging and population count analysis. Annual Meeting of the Western Division of the American Fisheries Society, Salt Lake City, UT, March

    Google Scholar 

  40. Zahn CT, Roskie RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans. on Computers 21:269–281

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, DJ., Archibald, J.K., Schoenberger, R.B., Dennis, A.W., Shiozawa, D.K. (2008). Contour Matching for Fish Species Recognition and Migration Monitoring. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78534-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78534-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78533-0

  • Online ISBN: 978-3-540-78534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics