On the Hardness of Reoptimization | SpringerLink
Skip to main content

On the Hardness of Reoptimization

  • Conference paper
SOFSEM 2008: Theory and Practice of Computer Science (SOFSEM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4910))

Abstract

We consider the following reoptimization scenario: Given an instance of an optimization problem together with an optimal solution, we want to find a high-quality solution for a locally modified instance. The naturally arising question is whether the knowledge of an optimal solution to the unaltered instance can help in solving the locally modified instance. In this paper, we survey some partial answers to this questions: Using some variants of the traveling salesman problem and the Steiner tree problem as examples, we show that the answer to this question depends on the considered problem and the type of local modification and can be totally different: For instance, for some reoptimization variant of the metric TSP, we get a 1.4-approximation improving on the best known approximation ratio of 1.5 for the classical metric TSP. For the Steiner tree problem on graphs with bounded cost function, which is APX-hard in its classical formulation, we even obtain a PTAS for the reoptimization variant. On the other hand, for a variant of TSP, where some vertices have to be visited before a prescribed deadline, we are able to show that the reoptimization problem is exactly as hard to approximate as the original problem.

This work was partially supported by SBF grant C 06.0108 as part of the COST 293 (GRAAL) project funded by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42, 154–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.Th.: Reoptimization of minimum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32(4), 171–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: Reusing optimal TSP solutions for locally modified input instances (extended abstract). In: IFIP TCS 2006. Proc. of the 4th IFIP International Conference on Theoretical Computer Science, pp. 251–270. Springer, Norwell (2006)

    Chapter  Google Scholar 

  5. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Operations Research 2(2), 83–93 (2007)

    MathSciNet  Google Scholar 

  6. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem (extended abstract). In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000)

    Google Scholar 

  7. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for TSP with sharpened triangle inequality. Information Processing Letters 75, 133–138 (2000)

    Article  MathSciNet  Google Scholar 

  8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality (extended abstract). In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. Theoretical Computer Science 285, 3–24 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the parameterized approximability of TSP with deadlines. Theory of Computing Systems (to appear)

    Google Scholar 

  11. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the approximation hardness of some generalizations of TSP. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 184–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of Steiner trees: changing the terminal set (submitted)

    Google Scholar 

  13. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO Theoretical Informatics and Applications 34, 213–255 (2000)

    Article  MATH  Google Scholar 

  14. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh (1976)

    Google Scholar 

  15. Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: VRP with time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, SIAM 2001, pp. 157–193 (2001)

    Google Scholar 

  16. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1971/72)

    Article  MathSciNet  Google Scholar 

  17. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the stability of approximation for Hamiltonian path problems. Algorithmic Operations Research 1(1), 31–45 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Garey, M., Johnson, D.: Computers and Intractability. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  19. Greenberg, H.: An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: Woodruff, D.L. (ed.) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search, pp. 97–148. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  20. Goldreich, O.: Bravely, moderately - A common theme in four recent works. In: SIGACT News, vol. 37, pp. 31–46. ACM, New York (2006)

    Google Scholar 

  21. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28, 422–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult than cycles. Operations Research Letters 10, 178–193 (1978)

    MathSciNet  Google Scholar 

  23. Hromkovič, J.: Stability of approximation algorithms for hard optimization problems. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 29–47. Springer, Heidelberg (1999)

    Google Scholar 

  24. Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Springer, Heidelberg (2003)

    Google Scholar 

  25. Libura, M.: Sensitivity analysis for minimum Hamiltonian path and traveling salesman problems. Discrete Applied Mathematics 30, 197–211 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Libura, M., van der Poort, E.S., Sierksma, G., van der Veen, J.A.A.: Stability aspects of the traveling salesman problem based on k-best solutions. Discrete Applied Mathematics 87, 159–185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mölle, D., Richter, S., Rossmanith, P.: A faster algorithm for the Steiner tree problem. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 561–570. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Friedr. Vieweg & Sohn, Braunschweig (2002)

    MATH  Google Scholar 

  29. Papadimitriou, Ch., Steiglitz, K.: Some examples of difficult traveling salesman problems. Operations Research 26, 434–443 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proc. of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779. ACM, New York (2000)

    Google Scholar 

  31. Sotskov, Y.N., Leontev, V.K., Gordeev, E.N.: Some concepts of stability analysis in combinatorial optimization. Discrete Appl. Math. 58, 169–190 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Van Hoesel, S., Wagelmans, A.: On the complexity of postoptimality analysis of 0/1 programs. Discrete Applied Mathematics 91, 251–263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Viliam Geffert Juhani Karhumäki Alberto Bertoni Bart Preneel Pavol Návrat Mária Bieliková

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böckenhauer, HJ., Hromkovič, J., Mömke, T., Widmayer, P. (2008). On the Hardness of Reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77566-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77565-2

  • Online ISBN: 978-3-540-77566-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics