Untangling a Planar Graph | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4910))

Abstract

In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. Pach and Tardos have posed a related problem: can any straight-line drawing of any planar graph with n vertices be made plane by vertex moves while keeping \({\Omega(n^\ensuremath{\varepsilon})}\) vertices fixed for some absolute constant \(\ensuremath{\varepsilon} >0\)? It is known that three vertices can always be kept (if n ≥ 5).

We still do not solve the problem of Pach and Tardos, but we report some progress. We prove that the number of vertices that can be kept actually grows with the size of the graph. More specifically, we give a lower bound of \(\Omega(\sqrt{\log n / \log \log n})\) on this number. By the same technique we show that in the case of outerplanar graphs we can keep a lot more, namely \(\Omega(\sqrt{n})\) vertices. We also construct a family of outerplanar graphs for which this bound is asymptotically tight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avis, D.: Generating rooted triangulations without repetitions. Algorithmica 16, 618–632 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial bound for untangling geometric planar graphs (October 2007), http://arxiv.org/abs/0710.1641

  3. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  4. Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C.-S., Wolff, A.: Moving vertices to make drawings plane. In: Hong, S.-H., Nishizeki, T. (eds.) GD 2007. Proc. 15th Intern. Sympos. Graph Drawing. LNCS, vol. 4875, Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  5. Hong, S.-H., Nagamochi, H.: Convex drawing of graphs with non-convex boundary. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 113–124. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21, 549–568 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kang, M., Schacht, M., Verbitsky, O.: How much work does it take to straighten a plane graph out? (June 2007), http://arxiv.org/abs/0707.3373

  8. Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–592 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Schensted, C.: Longest increasing and decreasing subsequences. Canadian Journal of Mathematics 13, 179–191 (1961)

    MATH  MathSciNet  Google Scholar 

  10. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990. Proc. 1st ACM-SIAM Symp. on Discrete Algorithms, pp. 138–148 (1990)

    Google Scholar 

  11. Spillner, A., Wolff, A.: Untangling a planar graph (September 2007), http://arxiv.org/abs/0709.0170

  12. Tantalo, J.: Planarity (2007), http://planarity.net/

  13. Tutte, W.T.: A theory of 3-connected graphs. Indagationes Mathematicae 23, 441–455 (1961)

    MathSciNet  Google Scholar 

  14. Verbitsky, O.: On the obfuscation complexity of planar graphs (May & June 2007), http://arxiv.org/abs/0705.3748

Download references

Author information

Authors and Affiliations

Authors

Editor information

Viliam Geffert Juhani Karhumäki Alberto Bertoni Bart Preneel Pavol Návrat Mária Bieliková

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spillner, A., Wolff, A. (2008). Untangling a Planar Graph. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77566-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77565-2

  • Online ISBN: 978-3-540-77566-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics