Abstract
Recently, there are so many videos available for people to choose to watch. To solve this problem, we propose a tagging system for video content based on facial expression that can be used for recommendations based on video content. Viewer’s face captured by a camera is extracted by Elastic Bunch Graph Matching, and the facial expression is recognized by Support Vector Machines. The facial expression is classified into Neutral, Positive, Negative and Rejective. Recognition results are recorded as ”facial expression tags” in synchronization with video content. Experimental results achieved an averaged recall rate of 87.61%, and averaged precision rate of 88.03%.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: MIR 2006. Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, Santa Barbara, California, USA, October 26 - 27, 2006, pp. 321–330. ACM Press, New York (2006)
Masumitsu, K., Echigo, T.: Personalized Video Summarization Using Importance Score. J.of IEICE J84-D-II(8), 1848–1855 (2001)
Taka, T., Watanabe, T., Taruguchi, H.: A TV Program Selection Support Agent with History Database. IPSJ Journal 42(12), 3130–3143 (2001)
Yamamoto, M., Nitta, N., Babaguchi, N.: Estimating Intervals of Interest During TV Viewing for Automatic Personal Preference Acquisition. In: PCM2006. Proceedings of The 7th IEEE Pacific-Rim Conference on Multimedia, pp. 615–623 (November 2006)
Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)
Bolme, D.S.: Elastic Bunch Graph Matchin. In: partial fulfillment of the requirements for the Degree of Master of Science Colorado State University Fort Collins, Colorado (Summer 2003)
Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition Kauai, USA, pp. 1–9 (2001)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions with Gabor Wavelets. In: Proceedings, Third IEEE International Conference on Automatic Face and Gesture Recognition, April 14-16, 1998, pp. 200–205. IEEE Computer Society, Nara Japan (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miyahara, M., Aoki, M., Takiguchi, T., Ariki, Y. (2008). Tagging Video Contents with Positive/Negative Interest Based on User’s Facial Expression. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77409-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-77409-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77407-5
Online ISBN: 978-3-540-77409-9
eBook Packages: Computer ScienceComputer Science (R0)